年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷京改版八年级数学下册第十五章四边形难点解析试题(含详细解析)

    立即下载
    加入资料篮
    精品试卷京改版八年级数学下册第十五章四边形难点解析试题(含详细解析)第1页
    精品试卷京改版八年级数学下册第十五章四边形难点解析试题(含详细解析)第2页
    精品试卷京改版八年级数学下册第十五章四边形难点解析试题(含详细解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第十五章 四边形综合与测试课时作业

    展开

    这是一份数学第十五章 四边形综合与测试课时作业
    京改版八年级数学下册第十五章四边形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形既是中心对称图形,又是轴对称图形的是( )A. B.C. D.2、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为(  )A.7 B. C.8 D.93、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )A. B. C. D.4、垦区小城镇建设如火如荼,小红家买了新楼.爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式( )A.1种 B.2种 C.3种 D.4种5、已知,四边形ABCD的对角线AC和BD相交于点O.设有以下条件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是(  )A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④6、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾7、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )A.1 B.2 C.3 D.48、下列图案中,是中心对称图形,但不是轴对称图形的是( )A. B.C. D.9、四边形的内角和与外角和的数量关系,正确的是(  )A.内角和比外角和大180° B.外角和比内角和大180°C.内角和比外角和大360° D.内角和与外角和相等10、下列图案中,是中心对称图形的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,,E、F分别在CD和BC的延长线上,,,则______.2、一个多边形的内角和为1080°,则它是______边形.3、如图,已知ABCD,和的平分线相交于,,求的度数_____.4、如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.5、正方形ABCD的边长是8cm,点M在BC边上,且MC=2cm,P是正方形边上的一个动点,连接PB交AM于点N,当PB=AM时,PN的长是_____ .三、解答题(5小题,每小题10分,共计50分)1、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,.(1)求证:D是EC中点;(2)若,于点F,直接写出图中与CF相等的线段.2、如图,在中,AE平分,于点E,点F是BC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,中,,求线段EF的长.3、如图,在长方形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,将∠B沿直线AE折叠,使点B落在点处.(1)如图1,当点E与点C重合时,与AD交于点F,求证:FA=FC;(2)如图2,当点E不与点C重合,且点在对角线AC上时,求CE的长.4、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH.(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为__________5、如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=62°,求∠GFC+∠BCF的值.-参考答案-一、单选题1、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴对称图形,故符合题意.【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.2、C【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.【详解】解:∵∠AEB=90,D是边AB的中点,AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是边AB的中点,点F是边BC的中点,∴DF是ABC的中位线,∴AC=2DF=8.故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键.3、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.【详解】解: 矩形ABCD, 设BE=x, ∵AE为折痕, ∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°, Rt△ABC中,∴Rt△EFC中,,EC=2-x, ∴, 解得:, 则点E到点B的距离为:. 故选:C.【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.4、C【分析】从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】解:正三角形每个内角是60°,能被360°整除,所以能单独镶嵌成一个平面;正方形每个内角是90°,能被360°整除,所以能单独镶嵌成一个平面;正五边形每个内角是108°,不能被360°整除,所以不能单独镶嵌成一个平面;正六边形每个内角是120°,能被360°整除,所以能单独镶嵌成一个平面.故只购买一种瓷砖进行平铺,有3种方式.故选:C.【点睛】本题主要考查了平面镶嵌.解这类题,根据组成平面镶嵌的条件,逐个排除求解.5、C【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.【详解】解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.故选:C.【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.6、B【分析】由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【详解】第一个图形是中心对称图形,又是轴对称图形,第二个图形是中心对称图形,又是轴对称图形,第三个图形不是中心对称图形,是轴对称图形,第四个图形不是中心对称图形,是轴对称图形,综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.故选:B.【点睛】点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、C【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;B.既是轴对称图形,又是中心对称图形,本选项不符合题意;C.是中心对称图形,但不是轴对称图形,本选项符合题意;D.既是轴对称图形,又是中心对称图形,本选项不符合题意;故选:C.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.9、D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.10、B【分析】由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题1、8【分析】证明四边形ABDE是平行四边形,得到DE=CD=,, 过点E作EH⊥BF于H,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF.【详解】解:∵四边形ABCD是平行四边形,∴,AB=CD, ∵,∴四边形ABDE是平行四边形,∴DE=CD=,, 过点E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,, ∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案为:8.【点睛】此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键.2、八【分析】根据多边形的内角和公式求解即可.n边形的内角的和等于: (n大于等于3且n为整数).【详解】解:设该多边形的边数为n,根据题意,得,解得,∴这个多边形为八边形,故答案为:八.【点睛】此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式.3、110°度【分析】过点E作EH∥AB,然后由AB∥CD,可得AB∥EH∥CD,然后根据两直线平行内错角相等可得∠ABE=∠BEH,∠CDE=∠DEH,然后根据周角的定义可求∠ABE+∠CDE的度数;再根据角平分线的定义求出∠EBF+∠EDF的度数,然后根据四边形的内角和定理即可求∠BFD的度数.【详解】解:过点E作EH∥AB,如图所示,∵AB∥CD,∴AB∥EH∥CD,∴∠ABE=∠BEH,∠CDE=∠DEH,∵∠BEH+∠DEH+∠BED=360°,∠BED=140°,∴∠BEH+∠DEH=220°,∴∠ABE+∠CDE=220°,∵∠ABE和∠CDE的平分线相交于F,∴∠EBF+∠EDF=(∠ABE+∠CDE)=110°,∵∠BFD+∠BED+∠EBF+∠EDF=360°,∴∠BFD=110°.故答案为:110°.【点睛】本题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.另外过点E作EH∥AB,也是解题的关键.4、##【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】解:∵四边形ABCD是矩形, ∴∠ABC=90°,BD=AC,BO=OD, ∵AB=6cm,BC=8cm, ∴由勾股定理得:(cm), ∴DO=5cm, ∵点E、F分别是AO、AD的中点, ∴EF=OD=2.5cm, 故答案为:2.5.【点睛】本题考查了矩形的性质的应用,勾股定理,三角形中位线的应用,解本题的关键是求出OD长及证明EF=OD.5、5cm或5.2cm【分析】当点P在BC上,AM>BP,当点P在AB上,AM>BP,当点P在CD上,如图,根据PB=AM,可证Rt△ABM≌Rt△BCP(HL),可证BP⊥AM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点P在AD上,如图,可证Rt△ABM≌Rt△BAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,【详解】解:当点P在BC上,AM>BP,当点P在AB上,AM>BP,不合题意,舍去;当点P在CD上,如图,∵PB=AM∵四边形ABCD为正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵MC=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm, 当点P在AD上,如图,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的长为5cm或5.2cm.故答案为5cm或5.2cm. 【点睛】本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键.三、解答题1、(1)见祥解;(2)AB=DC=DE=DF=CF,证明见详解.【分析】(1)根据四边形ABCD是平行四边形,得出AB∥CD即(AB∥ED),AB=CD,根据,可证四边形ABDE为平行四边形,得出AB=DE即可;(2)根据EF⊥BF,CD=ED,根据直角三角形斜边中线可得DF=CD=ED,再证△DCF为等边三角形即可.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD即(AB∥ED),AB=CD,∵,∴四边形ABDE为平行四边形,∴AB=DE,∴CD=ED,∴点D为CE中点;(2)结论为:AB=DC=DE=DF=CF,∵EF⊥BF,CD=ED,∴DF=CD=ED,∵AB∥CD,∠ABC=60°,∴∠DCF=∠ABC=60°,∴△DCF为等边三角形,∴CF=CD=DF=AB=ED.【点睛】本题考查平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质,掌握平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质是解题关键.2、(1)见解析;(2)2【分析】(1)利用ASA定理证明△AEB≌△AED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,仿照(1)的过程解答.【详解】解:(1)证明:∵AE平分,,∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵点F是BC的中点,∴BF=FC,∴EF是△BCD的中位线,∴EF=CD=(AC-AD)=(AC-AB);(2)解:分别延长BE、AC交于点H,∵AE平分,,∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AEH中,,∴△AEB≌△AEH(ASA)∴BE=EH,AH=AB=9,∵点F是BC的中点,∴BF=FC,∴EF是△BCD的中位线,∴EF=CH=(AH-AC)=2.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.3、(1)见解析;(2)CE=.【分析】(1)根据平行线的性质及折叠性质证明∠FAC=∠FCA即可.(2)由题意可得,根据勾股定理求出AC=5,进而求出B'C=2,设CE= x.然后在Rt△中,根据勾股定理EC2=2+2列方程求解即可;【详解】解:(1)如图1, ∵四边形ABCD是矩形,∴ADBC,∴∠FAC=∠ACB,∵∠ACB=∠ACF,∴∠FAC=∠FCA,∴FA=FC. (2)∵,如图2, 设CE= x, ∵四边形ABCD是矩形,∴∠B=90°,∴AC2=AB2+BC2= 32+42=25,∴AC=5,由折叠可知:,,,∴=5-3=2,在Rt△中,EC2=2+2∴x2=(4-x)2+22,∴x=,∴CE=.【点睛】本题属于矩形折叠问题,考查了矩形的性质,勾股定理,直角三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.4、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点 E、 F、G、H分别是OA、OB、OC、OD的中点,∴,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形;(2)∵点 E、 F、G、H分别是OA、OB、OC、OD的中点,∴,∴ ,∵的周长为2(AB+BC)=32,∴ ,∴ ,由(1)知:四边形EFGH是平行四边形,∴四边形EFGH的周长为 .【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键.5、(1)证明见解析;(2)73°.【分析】(1)根据正方形的性质及各角之间的关系可得:,由全等三角形的判定定理可得,再根据其性质即可得证;(2)根据垂直及等腰三角形的性质可得,再由三角形的外角的性质可得,由此计算即可.【详解】(1)证明:∵四边形ABCD是正方形,∴,,∵,∴,∵°,,∴,在和中,,∴,∴;(2)解:∵BE⊥BF,∴,又∵,∴,∵四边形ABCD是正方形,∴,∵,∴,∴.∴的值为.【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,三角形的外角性质,理解题意,熟练运用各个定理性质是解题关键.

    相关试卷

    初中北京课改版第十五章 四边形综合与测试习题:

    这是一份初中北京课改版第十五章 四边形综合与测试习题,共27页。试卷主要包含了如图,M等内容,欢迎下载使用。

    数学八年级下册第十五章 四边形综合与测试同步达标检测题:

    这是一份数学八年级下册第十五章 四边形综合与测试同步达标检测题,共29页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试达标测试:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试达标测试,共25页。试卷主要包含了下列说法中正确的是,下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map