


初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题,共1页。试卷主要包含了3的算术平方根为,在下列各数,下列说法中错误的是,若,则的值为等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若,则整数a的值不可能为( )A.2 B.3 C.4 D.52、若 ,则 ( )A. B. C. D.3、下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.负数没有立方根C.任何数的立方根都只有一个D.如果一个数有立方根,那么这个数也一定有平方根4、3的算术平方根为( )A. B.9 C.±9 D.±5、在下列各数:、0.2、﹣π、、、0.101001中有理数的个数是( )A.1 B.2 C.3 D.46、下列说法中错误的是( )A.9的算术平方根是3 B.的平方根是C.27的立方根为 D.平方根等于±1的数是17、若,则的值为( )A. B. C. D.或8、在,, 0, , , 0.010010001……, , -0.333…, , 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )A.2个 B.3个 C.4个 D.5个9、如图,数轴上的点A,B,O,C,D分别表示数,,0,1,2,则表示数的点P应落在( ).A.线段AB上 B.线段BO上 C.线段OC上 D.线段CD上10、关于的叙述,错误的是( )A.是无理数B.面积为8的正方形边长是C.的立方根是2D.在数轴上可以找到表示的点第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若实数满足,则=_____________.2、已知x2=36,那么x=___________;如果(-a)2=(7)2,那么a=_____________3、若,且a,b是两个连续的整数,则的值为______.4、若,则 的值为____________.5、规定了一种新运算:,计算:(3*4)*5=___.三、解答题(10小题,每小题5分,共计50分)1、已知a,b互为相反数,c,d互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.2、运算,满足(1)求的值;(2)求的值.3、阅读下面的文字,解答问题.现规定:分别用和表示实数x的整数部分和小数部分,如实数3.14的整数部分是,小数部分是;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即就是的小数部分,所以.(1) , ; , .(2)如果,,求的立方根.4、已知.(1)求x与y的值;(2)求x+y的算术平方根.5、如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为.(1)图1中阴影正方形的边长为 ;点P表示的实数为 ;(2)如图2,在4×4方格中阴影正方形的边长为a.①写出边长a的值.②请仿照(1)中的作图在数轴上表示实数﹣a+1.6、计算:7、(1)计算:;(2)求下列各式中的x:①;②(x+3)3=﹣27.8、计算:.9、计算:10、若与互为相反数,且x≠0,y≠0,求的值. -参考答案-一、单选题1、D【分析】首先确定和的范围,然后求出整式a可能的值,判断求解即可.【详解】解:∵,即,,即,又∵,∴整数a可能的值为:2,3,4,∴整数a的值不可能为5,故选:D.【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.2、B【分析】先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.【详解】解:,或(舍去),,故选:B.【点睛】本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.3、C【分析】利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义.【详解】解:∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴A选项说法不正确;∵一个负数有一个负的立方根,∴B选项说法不正确;∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴C选项说法正确;∵一个负数有一个负的立方根,但负数没有平方根,∴D选项说法不正确.综上,说法正确的是C选项,故选:C.【点睛】本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.4、A【分析】利用算术平方根的定义求解即可.【详解】3的算术平方根是.故选:A.【点睛】本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.5、D【分析】有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解.【详解】解:,,∴在、0.2、-π、、、0.101001中,有理数有0.2、、、0.101001,共有4个.故选:D.【点睛】本题考查有理数的意义,掌握有理数的意义是正确判断的前提.6、C【分析】根据平方根,算术平方根,立方根的性质,即可求解.【详解】解:A、9的算术平方根是3,故本选项正确,不符合题意;B、因为 ,4的平方根是 ,故本选项正确,不符合题意;C、27的立方根为3,故本选项错误,符合题意;D、平方根等于±1的数是1,故本选项正确,不符合题意;故选:C【点睛】本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.7、C【分析】化简后利用平方根的定义求解即可.【详解】解:∵,∴x2-9=55,∴x2=64,∴x=±8,故选C.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.8、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:=1,=2,,3,∴无理数有,,,2.010101…(相邻两个1之间有1个0)共4个.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9、B【分析】根据,得到,根据数轴与实数的关系解答.【详解】解:∵,∴,∴,∴,∴表示的点在线段BO上,故选:B.【点睛】本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键.10、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.【详解】解:A、是无理数,该说法正确,故本选项不符合题意;B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;C、8的立方根是2,该说法错误,故本选项符合题意;D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.二、填空题1、1【分析】根据绝对值与二次根式的非负性求出a,b的值,故可求解.【详解】解:∵∴a-2=0,b-4=0∴a=2,b=4∴=故答案为:1.【点睛】此题主要考查代数式求值,解题的关键是熟知非负性的运用.2、±6##6或-6 ±7 【分析】根据平方根的定义求解即可.【详解】解:∵(±6)2=36,∴当x2=36时,则x=±6;∵(-a)2=(7)2,∴a2=49,∵(±7)2=49,∴a=±7;故答案为:±6;±7.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根.0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.3、7【分析】先判断出的取值范围,确定a和b的值,即可求解.【详解】解:∵,∴a=3,b=4,∴a+b=7.故答案为:7.【点睛】本题考查了无理数的估算,正确估算出的取值范围是解题关键.4、【分析】根据算术平方根的定义可得,进而代入根据立方根的定义即可求解【详解】解:∵∴即故答案为:【点睛】本题考查了算术平方根和立方根的定义,求得的值是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数), 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).5、【分析】根据新定义的运算法则先将3*4转化为常规运算,再计算(3*4)*5即可.【详解】解:(3*4)*5=.故答案为.【点睛】本题考查新运算的理解,有理数乘除混合运算,倒数和与积,掌握新定义运算法则是解题关键.三、解答题1、-1【分析】由题意可知,,,,将值代入即可.【详解】解:由题意得:,;解得∴.【点睛】本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.2、(1)-10(2)-22【解析】(1)解:(2)解:【点睛】本题考查了有理数的混合运算,利用新运算代入求值即可,关键在于理解新运算,代入时候看清楚符号是否正确.3、(1)1,,3,;(2)2【分析】(1)先估算出和的范围,再根据题目规定的表示方法写出答案即可;(2)先估算出,的范围,即可求出a,b的值,进一步即可求出结果.【详解】(1)∵1<<2,3<<4,∴[]=1,<>=−1,[]=3,<>=−3,故答案为:1,,3,;(2)∵2<<3,10<<11,∴<>=a=−2,[]=b=10,∴,∴的立方根是2.【点睛】本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.4、(1),;(2)2【分析】(1)根据绝对值和平方根的非负性求出x与y的值;(2)先计算的值,即可得出的算术平方根.【详解】(1)由题可得:,解得:,∴,;(2),∵4的算术平方根为2,∴的算术平方根为2.【点睛】本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键.5、(1),1+;(2)①;②见解析【分析】(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;(2)①先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;②由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为.【详解】解:(1)正方形ABCD的面积为:,正方形ABCD的边长为:,,,由题意得:点表示的实数为:,故答案为:,;(2)①阴影部分正方形面积为:,求其算术平方根可得:,②如图所示:点表示的数即为.【点睛】本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键.6、【分析】先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.【详解】解:原式=1-8+4+=.【点睛】本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.7、(1);(2)①;②【分析】(1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;(2)①对等式进行开平方运算,再把x的系数转化为1即可;②对等式进行开立方运算,再移项即可.【详解】解:(1)=2(﹣2)﹣3=﹣3;(2)①±3x=±6;②(x+3)3=﹣27x+3=﹣3x=﹣6.【点睛】本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用.8、2﹣π.【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.【详解】解:=3﹣(π﹣)+(﹣1)﹣=3﹣π+﹣1﹣=2﹣π.【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.9、-10【分析】根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算.【详解】解:, , .【点睛】本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值.10、【分析】根据互为相反数的和为零,可得方程,再根据等式的性质变形.【详解】由题意可得:,即,∴,∴.【点睛】本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共22页。试卷主要包含了下列说法正确的是,3的算术平方根是,64的立方根为.,下列各数中,最小的数是,可以表示等内容,欢迎下载使用。
这是一份数学七年级下册第十二章 实数综合与测试同步测试题,共1页。试卷主要包含了下列各数是无理数的是,估算的值是在之间,在实数中,无理数的个数是,下列运算正确的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试精练,共1页。试卷主要包含了下列各数是无理数的是,100的算术平方根是,实数﹣2的倒数是,下列说法正确的是,下列等式正确的是.等内容,欢迎下载使用。