终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数同步测评试题(无超纲)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数同步测评试题(无超纲)第1页
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数同步测评试题(无超纲)第2页
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数同步测评试题(无超纲)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十二章 实数综合与测试课后复习题

    展开

    这是一份2021学年第十二章 实数综合与测试课后复习题,共1页。试卷主要包含了在下列四个实数中,最大的数是,10的算术平方根是,下列判断中,你认为正确的是,下列判断,如果a等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是(  )A.2 B.4 C.8 D.62、估计的值在(    A.5到6之间 B.6到7之间 C.7到8之间 D.8到9之间3、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽aa;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为(  )A. B.7 C. D.14、在下列四个实数中,最大的数是(  )A.0 B.﹣2 C.2 D.5、在3.14,中,无理数有(      A.1个 B.2个 C.3个 D.4个6、10的算术平方根是(    A.10 B. C. D.7、下列判断中,你认为正确的是(  )A.0的倒数是0 B.是分数 C.3<<4 D.的值是±38、下列判断:①10的平方根是±;②互为相反数;③0.1的算术平方根是0.01;④(3a;⑤=±a2.其中正确的有(  )A.1个 B.2个 C.3个 D.4个9、如果ab分别是的整数部分和小数部分,那么的值是(    A.8 B. C.4 D.10、数轴上表示1,的对应点分别为AB,点B关于点A的对称点为C,则点C所表示的数是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,(1)[﹣3.9)=______.(2)下列结论中正确的是______(填写所有正确结论的序号)①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是1;④存在实数x,使[x)﹣x=0.5成立.2、若mn是两个连续的整数,且,则______.3、已知xy为实数,且,则的值为______.4、若一个正数的平方根是3x+2和5x-10,则这个数是____________.5、比较大小:_____﹣(填“<”或“=”或“>”).三、解答题(10小题,每小题5分,共计50分)1、如果一个自然数的个位数字不为,且能分解成,其中都是两位数,的十位数字相同,个位数字之和为,则称数为“风雨数”,并把数分解成的过程,称为“同行分解”.例如:的十位数字相同,个位数字之和为是“风雨数”.又如:的十位数字相同,但个位数字之和不等于不是“风雨数”.(1)判断是否是“风雨数”?并说明理由;(2)把一个“风雨数”进行“同行分解”,即之和记为差的绝对值记为,令,当能被整除时,求出所有满足条件的2、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,…,这样的分式是假分式;像,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:.解决下列问题:(1)写出一个假分式为:    (2)将分式化为整式与真分式的和的形式为:    ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值.3、解方程,求x的值.(1)                     (2)4、已知:,求x+17的算术平方根.5、(1)计算:(2)求的值:6、计算下列各题:(1)(2)(3)7、如图,数轴的原点为O,点ABC是数轴上的三点,点B对应的数是1,AB=6,BC=2,动点PQ同时分别从AC出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).(1)点A表示的数为      ,点C表示的数为      (2)求t为何值时,点P与点Q能够重合?(3)是否存在某一时刻t,使点O平分线段PQ且点P与点Q在原点的异侧?若存在,请求出满足条件的t值.若不存在,请说明理由.8、已知的立方根是2,算术平方根是4,求的算术平方根.9、计算:10、解方程:(1)x2=81;(2)(x﹣1)3=27. -参考答案-一、单选题1、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.【详解】2n的个位数字是2,4,8,6循环,所以810÷4=202…2,则2810的末位数字是4.故选:B【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键.2、C【分析】将根号部分平方后得44即可看出,由此可判断其在6到7之间,再利用不等式的性质进行求解判断即可.【详解】故选:C.【点睛】本题考查二次根式的估值,关键在于利用平方法找到其大概的取值范围.3、A【分析】定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽aa;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.【详解】解:且当时,▽a=a▽(-3)=-3,4+▽(2-5)=4-3=1>-2,a>-2时,▽a=-a▽[4+▽(2-5)]=▽1=-1,故选:A.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.4、C【分析】先根据正数大于0,0大于负数,排除,然后再用平方法比较2与即可.【详解】解:正数负数,排除最大的数是2,故选:【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.5、C【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:3.14是有理数,是无理数,是无理数,是有理数,是有理数,是无理数,是有理数,是有理数;∴无理数有三个,故选C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6、B【分析】直接利用算术平方根的求法即可求解.【详解】解:的算术平方根是故选:B.【点睛】本题主要考查了算术平方根,解题的关键是掌握求解的运算法则.7、C【分析】根据倒数的概念即可判断A选项,根据分数的概念即可判断B选项,根据无理数的估算方法即可判断C选项,根据算术平方根的概念即可判断D选项.【详解】解:A、0不能作分母,所以0没有倒数,故本选项错误;B、属于无理数,故本选项错误;C、因为 9<15<16,所以 3<<4,故本选项正确;D、的值是3,故本选项错误.故选:C.【点睛】此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.8、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错.【详解】解:①10的平方根是±,正确;是相反数,正确;③0.1的算术平方根是,故错误;④(3a,正确;a2,故错误;正确的是①②④,有3个.故选:C.【点睛】本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.9、B【分析】先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可【详解】ab分别是的整数部分和小数部分,则故选B【点睛】本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键.10、C【分析】首先根据数轴上表示1,的对应点分别为AB可以求出线段AB的长度,然后由ABAC利用两点间的距离公式便可解答.【详解】解:∵数轴上表示1,的对应点分别为ABAB−1,∵点B关于点A的对称点为CACAB∴点C的坐标为:1−(−1)=2−故选:C【点睛】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.二、填空题1、-3;    ③④    【分析】(1)利用题中的新定义判断即可.(2)根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【详解】(1)表示大于-3.9的最小整数为-3,所以[﹣3.9)=-3(2)解: ①[0)=1,故本项错误; ②[x)−x>0,但是取不到0,故本项错误; ③[x)−x⩽1,即最大值为1,故本项正确; ④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.∴正确的选项是:③④;故答案为:③④.【点睛】此题考查了实数的运算,理解新定义实数的运算法则是解本题的关键.2、11【分析】根据无理数的估算方法求出的值,由此即可得.【详解】解:∵∵5、6是两个连续的整数,且故答案为:11.【点睛】本题考查了无理数的估算和代数式求值,熟练掌握无理数的估算方法是解题关键.3、2【分析】根据偶次幂及算术平方根的非负性可得xy的值,然后问题可求解.【详解】解:∵故答案为2.【点睛】本题主要考查偶次幂及算术平方根的非负性,熟练掌握偶次幂及算术平方根的非负性是解题的关键.4、25【分析】根据正数的平方根有2个,且互为相反数列出方程,求出方程的解得到的值,即可得到这个正数.【详解】解:根据题意得:解得:则这个数为25,故答案为:25.【点睛】本题考查了平方根,熟练掌握平方根的定义是解本题的关键.5、>【分析】先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.【详解】解: 故答案为:>【点睛】本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键.三、解答题1、(1)195是“风雨数”,621不是“风雨数”,理由见解析;;(2)【分析】根据新定义的“风雨数”即可得出答案;的十位数为,个位数为,则,根据能被整除求出的可能的值,再由的值求出的值即可得出答案.【详解】解:,且是“风雨数”,不是“风雨数”;,则能被整除,为整数,的倍数,满足条件的,则为整数,的因数,满足条件的,则为整数,的因数,满足条件的综上,的值为【点睛】本题是新定义题,主要考查了列代数式,一元一次方程的应用,关键是准确理解“风雨数”含义,能把用含的式子表示出来.2、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案.(2)根据题意给出的变形方法即可求出答案.(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一). (2)故答案为:(3)∵x2=±1或x2=±2,x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.3、(1) ;(2)x=−【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x−1可做一个整体求出其立方根,进而求出x的值.【详解】解:(1)(2)8(x−1)3=−27,x−1)3=−x−1=−x=−【点睛】本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.4、3【分析】首先根据,求出x的值,然后代入x+17求解算术平方根即可.【详解】解:∵∴5x+32=-8,解得:x=-8,x+17=-8+17=9,∵9的算术平方根为3,x+17的算术平方根为 3,故答案为:3.【点睛】此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.5、(1)0;(2)【分析】(1)根据立方根和平方根的性质化简,再计算加法,即可求解;(2)先将系数化为1,再利用平方根的性质,即可求解.【详解】解:(1)原式=-2+2   (2) 解得: 【点睛】本题主要考查了立方根和平方根的性质,熟练掌握 是解题的关键.6、(1)-3(2)-6x(3)4y-3xz【分析】(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.(1)解:原式(2)解:原式(3)解:【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(abn=anbn运算法则,整式的除法,理解a0=1(a≠0),a≠0),牢记法则是解题关键.7、(1)-5,3;(2)t=4;(3)存在,t=,理由见解析.【分析】(1)由点B对应的数及线段ABBC的长,可找出点AC对应的数;(2)根据点PQ的出发点、速度及方向,由追击的等量关系列出含t的方程,解方程即可;(3)由题意得OP=OQ,据此列一元一次方程,解此方程即可.【详解】解:(1)1-6=-5,1+2=3即点A表示的数为 -5,点C表示的数为3,故答案为:-5,3;(2)若点P与点Q能够重合,则AP-CQ=AC即3t-t=82t=8t=4答:当t=4时,点P与点Q能够重合.(3)存在,理由如下:若点OPQ中点,且点P与点Q在原点的异侧,即OP=OQ5-3t=3+t4t=2t=答:当t=时,点O平分线段PQ且点P与点Q在原点的异侧.【点睛】本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键.8、【分析】根据立方根、算术平方根解决此题.【详解】解:由题意得:2a+4=8,3a+b-1=16.a=2,b=11.∴4a+b=8+11=19.∴4a+b的算术平方根为【点睛】本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键.9、【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.10、(1)x=±9;(2)x=4【分析】(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.【详解】解:(1)开方得:x=±9;(2)开立方得:x﹣1=3,解得:x=4.【点睛】本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数). 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共22页。试卷主要包含了下列实数比较大小正确的是,下列说法正确的是,下列说法中错误的是,实数﹣2的倒数是,估计的值在,若 ,则等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共23页。试卷主要包含了下列语句正确的是,下列说法中正确的有,下列说法正确的是等内容,欢迎下载使用。

    数学第十二章 实数综合与测试课堂检测:

    这是一份数学第十二章 实数综合与测试课堂检测,共1页。试卷主要包含了3的算术平方根为,下列判断中,你认为正确的是,估计的值在,下列各式正确的是.,﹣π,﹣3,,的大小顺序是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map