


初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题,共1页。试卷主要包含了0.64的平方根是,的相反数是,下列判断中,你认为正确的是,下列各数中,最小的数是,对于两个有理数等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是( )A.﹣ B.﹣3 C.|﹣3.14| D.﹣π2、下列各数中,3.1415,,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )A.0个 B.1个 C.2个 D.3个3、如图,数轴上的点A,B,O,C,D分别表示数,,0,1,2,则表示数的点P应落在( ).A.线段AB上 B.线段BO上 C.线段OC上 D.线段CD上4、0.64的平方根是( )A.0.8 B.±0.8 C.0.08 D.±0.085、的相反数是( )A. B. C. D.6、在3.14,,,,,,,中,无理数有( )A.1个 B.2个 C.3个 D.4个7、下列判断中,你认为正确的是( )A.0的倒数是0 B.是分数 C.3<<4 D.的值是±38、下列各数中,最小的数是( )A.0 B. C. D.﹣39、对于两个有理数、,定义一种新的运算:,若,则的值为( )A. B. C. D.10、下列说法正确的是( )A.是最小的正无理数 B.绝对值最小的实数不存在C.两个无理数的和不一定是无理数 D.有理数与数轴上的点一一对应第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小:2______,的相反数是______.2、若|2y+1|=0,则xy2的值是_____.3、与最接近的整数为______.4、已知x、y满足关系式=0,则xy的算术平方根为______.5、比较大小:﹣|﹣4|______﹣π.(填“>”、“=”或“<”)三、解答题(10小题,每小题5分,共计50分)1、计算:(1).(2)+()2﹣2、如果一个自然数的个位数字不为,且能分解成,其中与都是两位数,与的十位数字相同,个位数字之和为,则称数为“风雨数”,并把数分解成的过程,称为“同行分解”.例如:,和的十位数字相同,个位数字之和为,是“风雨数”.又如:,和的十位数字相同,但个位数字之和不等于,不是“风雨数”.(1)判断,是否是“风雨数”?并说明理由;(2)把一个“风雨数”进行“同行分解”,即,与之和记为,与差的绝对值记为,令,当能被整除时,求出所有满足条件的.3、计算:4、计算:(1);(2).5、解方程:(1)4(x﹣1)2=36;(2)8x3=27.6、计算:(1);(2)﹣16÷(﹣2)2.7、(1)计算:(﹣)×(﹣1)2021+﹣;(2)求x的值:(3x+2)3﹣1=.8、阅读下面材料,并按要求完成相应问题:定义:如果一个数的平方等于-1,记为,这个数叫做虚数单位,把形如的数叫做复数,其中是这个复数的实部,是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.例如:应用:(1)计算(2)如果正整数a、b满足,求a、b的值.(3)将化为(均为实数)的形式,(即化为分母中不含的形式).9、(1)计算:;(2)分解因式:.10、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b﹣9)2=0,c=1.(1)a= ,b= ;(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|x﹣a|﹣|x﹣b|取得最大值,最大值为 ;(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t≤8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍? -参考答案-一、单选题1、D【分析】把数字从大到小排序,然后再找最小数.【详解】解:|﹣3.14|=3.14.|﹣3|=3,|-|=,|﹣π|=π.∴﹣π<﹣3<﹣<|﹣3.14|,故选:D.【点睛】本题考查实数大小比较,掌握比较方法是本题关键.2、D【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.1415,0.321是有限小数,属于有理数;是分数,属于有理数;无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.故选:D.【点睛】此题考查了无理数.解题的关键是掌握实数的分类.3、B【分析】根据,得到,根据数轴与实数的关系解答.【详解】解:∵,∴,∴,∴,∴表示的点在线段BO上,故选:B.【点睛】本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键.4、B【分析】根据如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,由此求解即可.【详解】解:∵(±0.8)2=0.64 ,∴0.64的平方根是±0.8,故选:B.【点睛】本题主要考查了平方根的概念,解题的关键在于掌握平方根的正负两种情况.5、B【分析】直接根据相反数的定义(只有符号不同的两个数互为相反数)进行求解即可.【详解】解:的相反数是;故选:B.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.6、C【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:3.14是有理数,是无理数,是无理数,是有理数,是有理数,是无理数,是有理数,是有理数;∴无理数有三个,故选C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.7、C【分析】根据倒数的概念即可判断A选项,根据分数的概念即可判断B选项,根据无理数的估算方法即可判断C选项,根据算术平方根的概念即可判断D选项.【详解】解:A、0不能作分母,所以0没有倒数,故本选项错误;B、属于无理数,故本选项错误;C、因为 9<15<16,所以 3<<4,故本选项正确;D、的值是3,故本选项错误.故选:C.【点睛】此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.8、C【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:,所给的各数中,最小的数是.故选:C.【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9、D【分析】根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.【详解】解: , , ,解得: 故选D【点睛】本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.10、C【分析】利用正无理数,绝对值,以及数轴的性质判断即可.【详解】解:、不存在最小的正无理数,不符合题意;、绝对值最小的实数是0,不符合题意;、两个无理数的和不一定是无理数,例如:,符合题意;、实数与数轴上的点一一对应,不符合题意.故选:C.【点睛】本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.二、填空题1、 ##【分析】(1)将2化为即可判断;(2)在的前面添“”号,即可得到其相反数.【详解】(1)∵∴∴,故答案为:(2);故答案为:【点睛】本题是实数的比较大小与求解相反数的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现.在任意一个数前面添上“”号,新的数就表示原数的相反数.2、【分析】先根据算术平方根和绝对值的非负性求出的值,再代入计算即可得.【详解】解:,,解得,则,故答案为:.【点睛】本题考查了算术平方根和绝对值的非负性、代数式求值,熟练掌握算术平方根和绝对值的非负性是解题关键.3、【分析】先判断再根据从而可得答案.【详解】解: 而 更接近的整数是故答案为:5【点睛】本题考查的无理数的估算,掌握“无理数的估算方法”是解本题的关键.4、4【分析】直接利用算术平方根以及偶次方的性质得出x,y的值,进而得出答案.【详解】解:∵,∴x+4=0,y-2=0,解得:x=-4,y=2,故xy=(-4)2=16,16的算术平方根是:4.故答案为:4.【点睛】本题主要考查了算术平方根以及偶次方的性质,正确得出x,y的值是解题关键.5、【分析】先化简绝对值,再根据实数的大小比较法则即可得.【详解】解:,因为,所以,即,故答案为:.【点睛】本题考查了绝对值、实数的大小比较,熟练掌握实数的大小比较法则是解题关键.三、解答题1、(1);(2)【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.【详解】(1)原式,;(2)原式,.【点睛】此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.2、(1)195是“风雨数”,621不是“风雨数”,理由见解析;;(2)或或或【分析】根据新定义的“风雨数”即可得出答案;设的十位数为,个位数为,则为,根据能被整除求出的可能的值,再由的值求出的值即可得出答案.【详解】解:,且,是“风雨数”,,,不是“风雨数”;设,则,,,能被整除,,为整数,,是的倍数,满足条件的有,,若,则,为整数,,是的因数,,,,,满足条件的有,,,,,或,或,或,,或,若,则,为整数,,是的因数,,,,,,,,,满足条件的有,,,,,或,或,或,,或,综上,的值为或或或.【点睛】本题是新定义题,主要考查了列代数式,一元一次方程的应用,关键是准确理解“风雨数”含义,能把和用含和的式子表示出来.3、-10【分析】根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算.【详解】解:, , .【点睛】本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值.4、(1)1;(2)【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.【详解】解:(1),=,=1;(2),=,=,=,=.【点睛】本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键.5、(1)x=4或﹣2;(2)x=【分析】(1)先变形为(x﹣1)2=9,然后求9的平方根即可;(2)先变形为x3=,再利用立方根的定义得到答案.【详解】解:(1)方程两边除以4得,(x﹣1)2=9,∴x﹣1=±3,∴x=4或﹣2;(2)方程两边除以8得,x3=,所以x=.【点睛】本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.6、(1)(2)【分析】(1)根据有理数的混合运算进行计算即可;(2)先根据求一个数的立方根求得为,进而根据有理数的混合运算进行计算即可【详解】(1)原式(2)原式【点睛】本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.7、(1);(2).【分析】(1)先计算乘方、立方根和算术平方根,再计算加减法即可得;(2)利用立方根解方程即可得.【详解】解:(1)原式;(2),,,,,.【点睛】本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.8、(1);(2)或;(3).【分析】(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;(2)利用平方差公式计算得出答案;(3)分子分母同乘以(2-i)后,把分母化为不含i的数后计算.【详解】(1)∵∴原式(2)∵∴∵a、b是正整数∴或(3)【点睛】本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.9、(1);(2)【分析】(1)先计算乘方运算,求解算术平方根,化简绝对值,再合并即可;(2)提取公因式即可.【详解】解:(1)解:原式(2)解:原式【点睛】本题考查的是立方根的含义,绝对值的化简,实数的运算,提公因式法分解因式,掌握“实数的运算及提公因式分解因式”是解本题的关键.10、(1)﹣3,9;(2)≥9,12;(3)秒或秒.【分析】(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;(2)由(1)得a=﹣3、b=9,则代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.【详解】解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,∴|a+3|=0,(b﹣9)2=0,∴a=﹣3,b=9,故答案为:﹣3,9.(2)∵a=﹣3,b=9,∴代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,当x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,∵﹣12≤2x﹣6<12,∴﹣12≤|x+3|﹣|x﹣9|<12;当x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,综上所述,|x+3|﹣|x﹣9|的最大值为12,故答案为:≥9,12.(3)∵点C表示的数是1,点B表示的数是9,∴B、C两点之间的距离是9﹣1=8,当点Q与点C重合时,则2t=8,解得t=4,当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t,根据题意得9﹣2t﹣(﹣3﹣t)=2×2t,解得t=;当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t,∵1+(2t﹣8)=2t﹣7,∴点Q表示的数是2t﹣7,根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),解得t=,综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍.【点睛】本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共21页。试卷主要包含了下列四个数中,最小的数是,的值等于,已知a=,b=-|-|,c=,实数在哪两个连续整数之间,下列说法等内容,欢迎下载使用。
这是一份初中数学第十二章 实数综合与测试当堂达标检测题,共20页。试卷主要包含了4的平方根是,下列说法正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第十二章 实数综合与测试课时作业,共21页。试卷主要包含了观察下列算式,三个实数,2,之间的大小关系,的相反数是,对于两个有理数,下列运算正确的是等内容,欢迎下载使用。