初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题,共1页。试卷主要包含了的算术平方根是,下列说法正确的是,三个实数,2,之间的大小关系,16的平方根是,的值等于等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若,那么( )A.1 B.-1 C.-3 D.-52、在﹣3,0,2,这组数中,最小的数是( )A. B.﹣3 C.0 D.23、下列各数是无理数的是( )A. B.3.33 C. D.4、点A在数轴上的位置如图所示,则点A表示的数可能是( )A. B. C. D.5、的算术平方根是( )A.2 B. C. D.6、下列说法正确的是( )A.的相反数是 B.2是4的平方根C.是无理数 D.7、三个实数,2,之间的大小关系( )A.>>2 B.>2> C.2>> D.<2<8、16的平方根是( )A.±8 B.8 C.4 D.±49、的值等于( )A. B.-2 C. D.210、9的平方根是( )A.±3 B.-3 C.3 D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个正数的平方根是3x+2和5x-10,则这个数是____________.2、x、y表示两个数,规定新运算“*”如下:x*y=2x﹣3y,那么(3*5)*(﹣4)=_____.3、计算:__________.4、的整数部分是_____________.5、已知x2=36,那么x=___________;如果(-a)2=(7)2,那么a=_____________三、解答题(10小题,每小题5分,共计50分)1、计算:.2、如果一个自然数的个位数字不为,且能分解成,其中与都是两位数,与的十位数字相同,个位数字之和为,则称数为“风雨数”,并把数分解成的过程,称为“同行分解”.例如:,和的十位数字相同,个位数字之和为,是“风雨数”.又如:,和的十位数字相同,但个位数字之和不等于,不是“风雨数”.(1)判断,是否是“风雨数”?并说明理由;(2)把一个“风雨数”进行“同行分解”,即,与之和记为,与差的绝对值记为,令,当能被整除时,求出所有满足条件的.3、已知a,b,c,d是有理数,对于任意,我们规定:.例如:.根据上述规定解决下列问题:(1)_________;(2)若,求的值;(3)已知,其中是小于10的正整数,若x是整数,求的值.4、先化简:,再从中选取一个合适的整数代入求值.5、已知是正数的两个平方根,且,求值,及的值.6、计算:(1);(2).7、计算:.8、求方程中x 的值(x﹣1)2 ﹣16 = 09、计算:10、计算:+++. -参考答案-一、单选题1、D【分析】由非负数之和为,可得且,解方程求得,,代入问题得解.【详解】解: , 且,解得,,,故选:D【点睛】本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.2、B【分析】先确定3与的大小,再确定四个数的大小顺序,由此得到答案.【详解】解:∵9>7,∴3>,∴-3<,∴-3<<0<2,故选:B.【点睛】此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键.3、C【分析】无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.【详解】解:,是有理数,3.33和是有理数,是无理数,故选:C.【点睛】本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.4、A【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A表示的数在4至4.5之间,A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;B、∵9<10<16,∴3<<4,故该选项不符合题意;C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;D、∵25<30<36,∴5<<6,故该选项不符合题意;故选:A.【点睛】本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.5、A【分析】根据算术平方根的定义即可求出结果.【详解】解:=4,4的算术平方根是2.故选:A.【点睛】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.6、B【分析】根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.【详解】解:A. 负数没有平方根,故无意义,A错误;B.,故2是4的平方根,B正确;C.是有理数,故C错误;D. ,故D错误; 故选B.【点睛】本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.7、A【分析】,根据被开方数的大小即判断这三个数的大小关系【详解】2<<故选A【点睛】本题考查了实数大小比较,掌握无理数的估算是解题的关键.8、D【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.9、D【分析】由于表示4的算术平方根,由此即可得到结果.【详解】解:∵4的算术平方根为2,∴的值为2.故选D.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.10、A【分析】根据平方根的定义进行判断即可.【详解】解:∵(±3)2=9∴9的平方根是±3故选:A.【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.二、填空题1、25【分析】根据正数的平方根有2个,且互为相反数列出方程,求出方程的解得到的值,即可得到这个正数.【详解】解:根据题意得:,解得:,即,,则这个数为25,故答案为:25.【点睛】本题考查了平方根,熟练掌握平方根的定义是解本题的关键.2、-6【分析】根据找出新的运算方法,再根据新的运算方法计算即可.【详解】故答案为:【点睛】本题考查了新定义下的实数运算,解题关键是根据题目给出的式子,找出新的运算方法,再根据新的运算方法计算要求的式子.3、3【分析】根据实数的运算法则即可求出答案.【详解】解:原式.【点睛】本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.4、3【分析】先估算的近似值,然后进行计算即可.【详解】解:,的整数部分是3,故答案为3.【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握求一个数的平方.5、±6##6或-6 ±7 【分析】根据平方根的定义求解即可.【详解】解:∵(±6)2=36,∴当x2=36时,则x=±6;∵(-a)2=(7)2,∴a2=49,∵(±7)2=49,∴a=±7;故答案为:±6;±7.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根.0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.三、解答题1、1【分析】分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.【详解】解:【点睛】本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.2、(1)195是“风雨数”,621不是“风雨数”,理由见解析;;(2)或或或【分析】根据新定义的“风雨数”即可得出答案;设的十位数为,个位数为,则为,根据能被整除求出的可能的值,再由的值求出的值即可得出答案.【详解】解:,且,是“风雨数”,,,不是“风雨数”;设,则,,,能被整除,,为整数,,是的倍数,满足条件的有,,若,则,为整数,,是的因数,,,,,满足条件的有,,,,,或,或,或,,或,若,则,为整数,,是的因数,,,,,,,,,满足条件的有,,,,,或,或,或,,或,综上,的值为或或或.【点睛】本题是新定义题,主要考查了列代数式,一元一次方程的应用,关键是准确理解“风雨数”含义,能把和用含和的式子表示出来.3、(1)-5(2)(3)k=1,4,7.【分析】(1)根据规定代入数据求解即可;(2)根据规定代入整式,利用方程的思想求解即可;(3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.(1)解:;(2)解:即:(3)解:,即:因为是小于10的正整数且x是整数,所以k=1时,x=3;k=4时,x=4;k=7时,x=5.所以k=1,4,7.【点睛】本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.4、∴或933或925或91【点睛】本题是一道以新定义为背景的阅读题目,能够根据定义列出代数式,根据各数的取值范围求出a、b、y的值是解答的关键.7.2x-2,2.【分析】根据分式的加法和除法可以化简题目中的式子,然后在中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:原式=,∵,x取整数,∴x可取2,当x=2时,原式=2×2-2=2.【点睛】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.5、, ,.【分析】根据正数的平方根有2个,且互为相反数,以及求出与的值即可.【详解】解:因为,是正数的两个平方根,可得:,把代入,,解得:,所以,所以.【点睛】此题考查了平方根,明确一个正数的两个平方根互为相反数,和为0是解题的关键.6、(1);(2).【分析】(1)由题意利用算术平方根和立方根的性质进行化简计算即可;(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.【详解】解:(1)(2)【点睛】本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.7、1【分析】根据平方根与立方根可直接进行求解.【详解】解:原式.【点睛】本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.8、或【分析】根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)【详解】解:(x﹣1)2 ﹣16 = 0或解得或【点睛】本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键.9、【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.10、.【分析】先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.【详解】解:原式.【点睛】本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共19页。试卷主要包含了观察下列算式,估计的值在,以下正方形的边长是无理数的是,4的平方根是,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共21页。试卷主要包含了下列说法中错误的是,0.64的平方根是,估算的值是在之间等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共21页。试卷主要包含了关于的叙述,错误的是,下列运算正确的是,下列等式正确的是,的算术平方根是等内容,欢迎下载使用。