初中沪教版 (五四制)第十二章 实数综合与测试随堂练习题
展开
这是一份初中沪教版 (五四制)第十二章 实数综合与测试随堂练习题,共1页。试卷主要包含了在以下实数,规定一种新运算,实数﹣2的倒数是,估计的值应该在.,下列运算正确的是,在下列四个实数中,最大的数是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各数是无理数的是( )A. B.3.33 C. D.2、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )A.4 B.6 C.12 D.363、下列说法不正确的是( )A.0的平方根是0 B.一个负数的立方根是一个负数C.﹣8的立方根是﹣2 D.8的算术平方根是24、在以下实数:﹣,,π,3.1411,8,0.020020002…中,无理数有( )A.2个 B.3个 C.4个 D.5个5、规定一种新运算:,如.则的值是( ).A. B. C.6 D.86、实数﹣2的倒数是( )A.2 B.﹣2 C. D.﹣7、估计的值应该在( ).A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间8、下列运算正确的是( )A. B. C. D.9、在下列四个实数中,最大的数是( )A.0 B.﹣2 C.2 D.10、下列各式正确的是( ).A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知x,y是实数,且+(y-3)2=0,则xy的立方根是__________.2、已知432=1849,442=1936,452=2025,462=2116,若n为整数,且n<<n+1,则n的值为 _____.3、若定义新的运算符号“*”为a*b=,则(*)*2=________.4、当______ 时,分式的值为零5、若a、b为实数,且,则ab的值______.三、解答题(10小题,每小题5分,共计50分)1、解方程:(1)4(x﹣1)2=36;(2)8x3=27.2、(1)计算:﹣32﹣(2021)0+|﹣2|﹣()﹣2×(﹣);(2)解方程:=﹣1.3、计算:4、计算:.5、计算:6、计算:.7、(1)计算:;(2)求下列各式中的x:①;②(x+3)3=﹣27.8、已知正数a的两个不同平方根分别是2x﹣2和6﹣3x,a﹣4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b2+3a﹣8的立方根.9、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b﹣9)2=0,c=1.(1)a= ,b= ;(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|x﹣a|﹣|x﹣b|取得最大值,最大值为 ;(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t≤8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?10、已知:,求x+17的算术平方根. -参考答案-一、单选题1、C【分析】无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.【详解】解:,是有理数,3.33和是有理数,是无理数,故选:C.【点睛】本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.2、D【分析】根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.【详解】解:∵一个正数a的两个不同平方根是2x-2和6-3x,∴2x-2+6-3x=0,解得:x=4,∴2x-2=2×4-2=8-2=6,∴正数a=62=36.故选择D.【点睛】本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.3、D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案.【详解】解:A、0的平方根是0,原说法正确,故此选项不符合题意;B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D、8的算术平方根是2,原说法不正确,故此选项符合题意;故选:D.【点睛】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.4、B【分析】根据“无限不循环的小数是无理数”可直接进行排除选项.【详解】解:∵,∴在以下实数:﹣,,π,3.1411,8,0.020020002…中,无理数有﹣,π,0.020020002…;共3个;故选B.【点睛】本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键.5、C【分析】根据新定义计算法则把转化为常规下运算得出,然后按有理数运算法则计算即可.【详解】解:∵,∴.故选择C.【点睛】本题考查新定义运算,掌握新定义运算的要点,含乘方的有理数混合运算是解题关键.6、D【分析】根据倒数的定义即可求解.【详解】解:-2的倒数是﹣.故选:D【点睛】本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.7、C【分析】根据25<29<36估算出的大小,然后可求得的范围.【详解】解:∵25<29<36,∴<<,即5<<6.8、B【分析】根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可.【详解】解:A、,计算错误,不符合题意;B、,计算正确,符合题意;C、,计算错误,不符合题意;D、,计算错误,不符合题意;故选B.【点睛】本题主要考查了立方根,算术平方根,有理数的乘方,熟知相关计算法则是解题的关键.9、C【分析】先根据正数大于0,0大于负数,排除,,然后再用平方法比较2与即可.【详解】解:正数,负数,排除,,,,,,最大的数是2,故选:.【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.10、D【分析】一个整数有两个平方根,这两个平方根互为相反数;如果一个数的立方等于,那么这个数叫做的立方根;据此可得结论.【详解】解:A、,原式错误,不符合题意;B、,原式错误,不符合题意;C、,原式错误,不符合题意;D、,原式正确,符合题意;故选:D.【点睛】本题考查了立方根,平方根,算数平方根,熟练掌握相关概念是解本题的关键.二、填空题1、【分析】根据二次根式和平方的非负性,可得 ,即可求解.【详解】解:根据题意得: ,解得: ,∴ .故答案为:【点睛】本题主要考查了二次根式和平方的非负性,立方根的性质,熟练掌握二次根式和平方的非负性,立方根的性质是解题的关键.2、44【分析】由已知条件的提示可得,即,从而可得答案.【详解】解:,∴即 又∵,n为整数,.故答案为:44.【点睛】本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.3、##【分析】根据新定义的运算,先算括号、再算括号外即可.【详解】解:(*)*2= .故答案是.【点睛】本题考查了有理数的四则混合运算、新定义运算等知识点,理解新定义运算的运算法则是解答本题的关键.4、【分析】由分式的值为0的条件可得:,再解方程与不等式即可得到答案.【详解】解: 分式的值为零, 由①得: 由②得:且 综上: 故答案为:【点睛】本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.5、3【分析】根据平方的非负性及算术平方根的非负性求出a及b的值,代入计算即可.【详解】解:∵,∴,∴,∴=3,故答案为:3.【点睛】此题考查了平方的非负性及算术平方根的非负性,以及实数的乘方运算,正确掌握平方的非负性及算术平方根的非负性是解题的关键.三、解答题1、(1)x=4或﹣2;(2)x=【分析】(1)先变形为(x﹣1)2=9,然后求9的平方根即可;(2)先变形为x3=,再利用立方根的定义得到答案.【详解】解:(1)方程两边除以4得,(x﹣1)2=9,∴x﹣1=±3,∴x=4或﹣2;(2)方程两边除以8得,x3=,所以x=.【点睛】本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.2、(1)-7;(2)x=9.【分析】(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)直接去分母,移项合并同类项解方程即可.【详解】解:(1)原式=﹣9﹣1+2﹣9×(﹣)=﹣9﹣1+2+1=﹣7;(2)去分母得:2x﹣3(1+x)=﹣12,去括号得:2x﹣3﹣3x=﹣12,移项得:2x﹣3x=﹣12+3,合并同类项得:﹣x=﹣9,系数化1得:x=9.【点睛】此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.3、【分析】先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.【详解】解:原式=1-8+4+=.【点睛】本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.4、1【分析】根据平方根与立方根可直接进行求解.【详解】解:原式.【点睛】本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.5、【分析】分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.【详解】解:原式【点睛】本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.6、【分析】根据求一个数的算术平方根,负整数指数幂,0次幂进行计算即可【详解】原式= =.【点睛】本题考查了求一个数的算术平方根,负整数指数幂,0次幂,正确的计算是解题的关键.7、(1);(2)①;②【分析】(1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;(2)①对等式进行开平方运算,再把x的系数转化为1即可;②对等式进行开立方运算,再移项即可.【详解】解:(1)=2(﹣2)﹣3=﹣3;(2)①±3x=±6;②(x+3)3=﹣27x+3=﹣3x=﹣6.【点睛】本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用.8、(1),;(2)b2+3a﹣8的立方根是5【分析】(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;(2)将(1)中所求a、b的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.【详解】解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x,∴2x﹣2+6﹣3x=0,∴x=4,∴2x﹣2=6,∴a=36,∵a﹣4b的算术平方根是4,∴a﹣4b=16,∴36-4b=16∴b=5;(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,∴b2+3a﹣8的立方根是5.【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.9、(1)﹣3,9;(2)≥9,12;(3)秒或秒.【分析】(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;(2)由(1)得a=﹣3、b=9,则代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.【详解】解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,∴|a+3|=0,(b﹣9)2=0,∴a=﹣3,b=9,故答案为:﹣3,9.(2)∵a=﹣3,b=9,∴代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,当x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,∵﹣12≤2x﹣6<12,∴﹣12≤|x+3|﹣|x﹣9|<12;当x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,综上所述,|x+3|﹣|x﹣9|的最大值为12,故答案为:≥9,12.(3)∵点C表示的数是1,点B表示的数是9,∴B、C两点之间的距离是9﹣1=8,当点Q与点C重合时,则2t=8,解得t=4,当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t,根据题意得9﹣2t﹣(﹣3﹣t)=2×2t,解得t=;当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t,∵1+(2t﹣8)=2t﹣7,∴点Q表示的数是2t﹣7,根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),解得t=,综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍.【点睛】本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.10、3【分析】首先根据,求出x的值,然后代入x+17求解算术平方根即可.【详解】解:∵,∴5x+32=-8,解得:x=-8,∴x+17=-8+17=9,∵9的算术平方根为3,∴x+17的算术平方根为 3,故答案为:3.【点睛】此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共26页。试卷主要包含了下列运算正确的是,a为有理数,定义运算符号▽,关于的叙述,错误的是,下列等式正确的是,下列判断,若关于x的方程等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题,共18页。试卷主要包含了3的算术平方根为,下列四个数中,最小的数是,下列说法正确的是,下列说法不正确的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共22页。试卷主要包含了规定一种新运算,对于两个有理数,已知a=,b=-|-|,c=,下列各式中正确的是,9的平方根是等内容,欢迎下载使用。