终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数课时练习试卷(无超纲带解析)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数课时练习试卷(无超纲带解析)第1页
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数课时练习试卷(无超纲带解析)第2页
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数课时练习试卷(无超纲带解析)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第十二章 实数综合与测试同步练习题

    展开

    这是一份数学七年级下册第十二章 实数综合与测试同步练习题,共1页。试卷主要包含了若关于x的方程,下列运算正确的是,以下正方形的边长是无理数的是,下列说法正确的是等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、的相反数是(    A.﹣ B. C. D.32、下列判断中,你认为正确的是(  )A.0的倒数是0 B.是分数 C.3<<4 D.的值是±33、下列说法不正确的是(    A.0的平方根是0 B.一个负数的立方根是一个负数C.﹣8的立方根是﹣2 D.8的算术平方根是24、若关于x的方程(k2﹣9)x2+(k﹣3)xk+6是一元一次方程,则k的值为(  )A.9 B.﹣3 C.﹣3或3 D.35、下列运算正确的是(  )A. B. C. D.6、以下正方形的边长是无理数的是(    A.面积为9的正方形 B.面积为49的正方形C.面积为8的正方形 D.面积为25的正方形7、在实数,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有(    )个A.2 B.3 C.4 D.58、一个正方体的体积是5m3,则这个正方体的棱长是(  )A.m B.m C.25m D.125m9、下列说法正确的是(    A.5是25的算术平方根 B.的平方根是±6C.(﹣6)2的算术平方根是±6 D.25的立方根是±510、已知2m﹣1和5﹣ma的平方根,a是(    A.9 B.81 C.9或81 D.2第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若,且ab是两个连续的整数,则的值为______.2、如果一个数的平方等于16,那么这个数是________.3、实数在数轴上对应的点的位置如图所示,则|a-b|-|b+a|=______.4、已知432=1849,442=1936,452=2025,462=2116,若n为整数,且nn+1,则n的值为 _____.5、给定二元数对(pq),其中或1,或1.三种转换器ABC对(pq)的转换规则如下:(1)在图1所示的“ABC”组合转换器中,若输入,则输出结果为________;(2)在图2所示的“①—C—②”组合转换器中,若当输入时,输出结果均为0,则该组合转换器为“____—C—____”(写出一种组合即可).三、解答题(10小题,每小题5分,共计50分)1、已知的平方根是的立方根是2,的整数部分,求的算术平方根.2、计算:(1)          (2)3、求下列各式中的值:(1)                        (2)4、直接写出结果:(1)____________;(2)____________;(3)的立方根=____________;(4)若x2=(﹣7)2,则x=____________.5、计算:6、运算,满足(1)求的值;(2)求的值.7、计算:(1)(2)8、计算:(1)(2)﹣16÷(﹣2)29、(1)计算(2)计算(3)解方程(4)解方程组10、已知(1)求xy的值;(2)求x+y的算术平方根. -参考答案-一、单选题1、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】解:的相反数是﹣故选:A【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.2、C【分析】根据倒数的概念即可判断A选项,根据分数的概念即可判断B选项,根据无理数的估算方法即可判断C选项,根据算术平方根的概念即可判断D选项.【详解】解:A、0不能作分母,所以0没有倒数,故本选项错误;B、属于无理数,故本选项错误;C、因为 9<15<16,所以 3<<4,故本选项正确;D、的值是3,故本选项错误.故选:C.【点睛】此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.3、D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案.【详解】解:A、0的平方根是0,原说法正确,故此选项不符合题意;B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D、8的算术平方根是2,原说法不正确,故此选项符合题意;故选:D.【点睛】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.4、B【分析】含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.【详解】解: 关于x的方程(k2﹣9)x2+(k﹣3)xk+6是一元一次方程, 由①得: 由②得: 所以: 故选B【点睛】本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.5、B【分析】依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可.【详解】A、,故A错误;B、,故B正确;C.,故C错误;D.−|-2|=-2,故D错误.故选:B.【点睛】本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键.6、C【分析】理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.【详解】解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;C、面积为8的正方形的边长为,是无理数,故本选项符合题意;D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.故选:C.【点睛】本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.7、C【分析】利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.【详解】有理数有:,一共四个.无理数有:,1.12112111211112…(每两 个2之间依次多一个1),一共四个.故选:C.【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.8、B【分析】根据正方体的体积公式:Va3,把数据代入公式解答.【详解】解:××=5(立方米),答:这个正方体的棱长是米,故选:B.【点睛】此题主要考查正方体体积公式的灵活运用,关键是熟记公式.9、A【分析】如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的立方等于a,那么这个数叫做a的立方根;据此判断即可.【详解】解:A、5是25的算术平方根,正确,符合题意;B、,6的平方根是±,错误,不符合题意;C、(﹣6)2的算术平方根是6,错误,不符合题意;D、25的平方根是±5,错误,不符合题意;故选:A.【点睛】本题考查了平方根、算术平方根、立方根,熟练掌握相关定义是解本题的关键.10、C【分析】分两种情况讨论求解:当2m﹣1与5﹣ma的两个不同的平方根和当2m﹣1与5﹣ma的同一个平方根.【详解】解:若2m﹣1与5﹣m互为相反数,则2m﹣1+5﹣m=0,m=﹣4,∴5﹣m=5﹣(﹣4)=9,a=92=81,若2m﹣1=5﹣mm=2,∴5﹣m=5﹣2=3,a=32=9,故选C.【点睛】本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.二、填空题1、7【分析】先判断出的取值范围,确定ab的值,即可求解.【详解】解:∵a=3,b=4,a+b=7.故答案为:7.【点睛】本题考查了无理数的估算,正确估算出的取值范围是解题关键.2、【分析】根据平方根的定义进行解答即可.【详解】解:∵∴如果一个数的平方等于16,那么这个数是故答案为:【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)3、2b【分析】由题意根据绝对值的意义即非负数的绝对值是它本身,负数的绝对值是它的相反数.同时注意数轴上右边的数总大于左边的数进行分析计算即可解答.【详解】解:由数轴可得:a-b<0,b+a<0,∴|a-b|-|b+a|=b-a+b+a=2b.故答案为:2b【点睛】本题主要考查实数与数轴之间的对应关系及绝对值的化简,注意掌握根据点在数轴上的位置来正确判断出代数式值的符号.4、44【分析】由已知条件的提示可得,即,从而可得答案.【详解】解: 又∵n为整数,故答案为:44.【点睛】本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.5、1    A    A    【分析】(1)利用转换器C的规则即可求出答案.(2)利用转换器ABC的规则,写出一组即可.【详解】(1)解:利用转换器C的规则可得:输出结果为1.(2)解:当输入时,若①对应A,此时经过AC输出结果为(1,0),②对应A,输出结果恰好为0.当输入时,若①对应A,此时经过AC输出结果为(0,1),②对应A,输出结果恰好为0.故答案为:1;AA【点睛】本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目.三、解答题1、【分析】直接利用平方根以及立方根和估算无理数的大小得出abc的值进而得出答案.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得:a=5,∵3a+b-9的立方根是2,∴15+b-9=8,解得:b=2,∵4<<5,c的整数部分,c=4,a+2b+c=5+4+4=13,a+2b+c的算术平方根为【点睛】此题主要考查了平方根以及立方根和估算无理数的大小,正确得出abc的值是解题关键.2、(1)1;(2)2【分析】(1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;(2)根据同分母分式的加减法法则计算.【详解】解:(1)原式=1+2-2  =1.(2)原式= =2.【点睛】此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键..3、(1);(2)【分析】(1)把原方程化为,再利用立方根的含义解方程即可;(2)直接利用平方根的含义把原方程化为,再解两个一次方程即可.【详解】解:(1) 解得: (2) 解得:【点睛】本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.4、(1)8;(2)0;(3)2;(4)【分析】(1)根据算术平方根的计算法则求解即可;(2)根据算术平方根的计算法则求解即可;(3)根据立方根的求解方法求解即可;(4)根据求平方根的方法解方程即可.【详解】解:(1)故答案为:8;(2)故答案为:0;(3)∵的立方根是2,故答案为:2;(4)∵x2=(﹣7)2x2=49,x=±7.故答案为:±7.【点睛】本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.5、【分析】分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.【详解】解:原式【点睛】本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.6、(1)-10(2)-22【解析】(1)解:(2)解:【点睛】本题考查了有理数的混合运算,利用新运算代入求值即可,关键在于理解新运算,代入时候看清楚符号是否正确.7、(1)1;(2)【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.【详解】解:(1)==1;(2)====【点睛】本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键.8、(1)(2)【分析】(1)根据有理数的混合运算进行计算即可;(2)先根据求一个数的立方根求得,进而根据有理数的混合运算进行计算即可【详解】(1)原式(2)原式【点睛】本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.9、(1);(2);(3);(4)【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即可得.【详解】解:(1)原式(2)原式(3)(4)由②①得:解得代入①得:解得故方程组的解为【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.10、(1);(2)2【分析】(1)根据绝对值和平方根的非负性求出xy的值;(2)先计算的值,即可得出的算术平方根.【详解】(1)由题可得:解得:(2)∵4的算术平方根为2,的算术平方根为2.【点睛】本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共21页。试卷主要包含了下列运算正确的是,下列计算正确的是.,下列说法,如果a,已知a=,b=-|-|,c=等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共24页。试卷主要包含了若,则的值为,若关于x的方程,下列说法正确的是,若,则整数a的值不可能为,若与互为相反数,则a等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共21页。试卷主要包含了如果a,若,则的值为,下列各式中,化简结果正确的是,下列各数是无理数的是,下列各数中,比小的数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map