![2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数专题测试试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12706093/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数专题测试试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12706093/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数专题测试试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12706093/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习
展开
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共1页。试卷主要包含了计算2﹣1+30=,在下列各数,9的平方根是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、实数﹣2的倒数是( )A.2 B.﹣2 C. D.﹣2、若,则整数a的值不可能为( )A.2 B.3 C.4 D.53、如图,数轴上的点A,B,O,C,D分别表示数,,0,1,2,则表示数的点P应落在( ).A.线段AB上 B.线段BO上 C.线段OC上 D.线段CD上4、计算2﹣1+30=( )A. B.﹣1 C.1 D.5、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).A.2个 B.3个 C.4个 D.5个6、在下列四个选项中,数值最接近的是( )A.2 B.3 C.4 D.57、在下列各数:、0.2、﹣π、、、0.101001中有理数的个数是( )A.1 B.2 C.3 D.48、实数2,0,﹣3,﹣中,最小的数是( )A.﹣3 B.﹣ C.2 D.09、9的平方根是( )A.±3 B.-3 C.3 D.10、下列说法正确的是( )A.=±2 B.27的立方根是±3 C.9的平方根是3 D.9的平方根是±3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、的算术平方根是________,的平方根是__________,-8的立方根是_________,2、在实数范围内因式分解:y2﹣2y﹣1=__________________.3、的算术平方根是_____,的立方根是_____,的倒数是_____.4、近几年来魔术风靡我国,小亮发明了一个魔术盒,把一个实数对(,)放入其中,就得到一个数为2-3+1,如把(3,2)放入其中,就得到32-32+1=4,若把(-3,2)放入其中,得到数,再把(,4)放入其中,则得到的数是___________.5、已知x2=36,那么x=___________;如果(-a)2=(7)2,那么a=_____________三、解答题(10小题,每小题5分,共计50分)1、计算 2、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.(1)用xcm表示图中空白部分的面积;(2)当x=5cm时空白部分面积为多少?(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?3、直接写出结果:(1)____________;(2)____________;(3)的立方根=____________;(4)若x2=(﹣7)2,则x=____________.4、(1)计算:(﹣)×(﹣1)2021+﹣;(2)求x的值:(3x+2)3﹣1=.5、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为.参考小燕同学的做法,解答下列问题:(1)写出的小数部分为________;(2)已知与的小数部分分别为a和b,求a2+2ab+b2的值;(3)如果,其中x是整数,0<y<1,那么=________(4)设无理数(m为正整数)的整数部分为n,那么的小数部分为________(用含m,n的式子表示).6、已知一个正数x的平方根是a+3和2a-15,求a和x的值7、已知x,y满足,求x、y的值.8、计算:(1); (2).9、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3﹣a3=(b﹣a)(b2+ab+a2).)(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.10、计算: -参考答案-一、单选题1、D【分析】根据倒数的定义即可求解.【详解】解:-2的倒数是﹣.故选:D【点睛】本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.2、D【分析】首先确定和的范围,然后求出整式a可能的值,判断求解即可.【详解】解:∵,即,,即,又∵,∴整数a可能的值为:2,3,4,∴整数a的值不可能为5,故选:D.【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.3、B【分析】根据,得到,根据数轴与实数的关系解答.【详解】解:∵,∴,∴,∴,∴表示的点在线段BO上,故选:B.【点睛】本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键.4、D【分析】利用负整数指数幂和零指数幂的意义进行化简计算即可.【详解】解:原式=+1=.故选:D.【点睛】本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.5、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6、A【分析】根据无理数的估算先判断,进而根据,,进而可以判断,即可求得答案【详解】解:,,,,即更接近2故选A【点睛】本题考查了无理数的估算,掌握无理数的估算是解题的关键.7、D【分析】有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解.【详解】解:,,∴在、0.2、-π、、、0.101001中,有理数有0.2、、、0.101001,共有4个.故选:D.【点睛】本题考查有理数的意义,掌握有理数的意义是正确判断的前提.8、A【分析】根据实数的性质即可判断大小.【详解】解:∵﹣3<﹣<0<2故选A.【点睛】此题主要考查实数的大小比较,解题的关键是熟知实数的性质.9、A【分析】根据平方根的定义进行判断即可.【详解】解:∵(±3)2=9∴9的平方根是±3故选:A.【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.10、D【分析】根据平方根、立方根和算术平方根的性质计算即可;【详解】=2,故A错误;27的立方根是3,故B错误;9的平方根是±3,故C错误;9的平方根是±3,故D正确;故选D.【点睛】本题主要考查了平方根的性质,立方根的性质和算术平方根的性质,准确计算是解题的关键.二、填空题1、5 ±3 -2 【分析】根据算术平方根、平方根、立方根的定义即可求解.【详解】解:=25∴算术平方根是5=9,∴的平方根是±3-8的立方根是-2故答案为:5;±3;-2.【点睛】此题主要考查算术平方根、平方根、立方根,解题的关键是熟知:算术平方根的定义:如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个数的立方等于a,那么这个数叫做a的立方根.2、(y﹣1+)(y﹣1﹣)【分析】变形整式为y2﹣2y+1﹣2,前三项利用完全平方公式,再利用平方差公式因式分解.【详解】解:y2﹣2y﹣1=y2﹣2y+1﹣2=(y﹣1)2﹣()2=(y﹣1+)(y﹣1﹣).故答案为:(y﹣1+)(y﹣1﹣).【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法是解题的关键.3、9【分析】根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可.【详解】解:=81的算术平方根是9,=的立方根是,的倒数是,故答案为:-9,,.【点睛】本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.4、5【分析】由魔术盒的性质可知m=(-3)2-32+1=4,故(4,4)在魔术盒中的数字为(4)2-34+1=5.【详解】将(-3,2)代入2-3+1有(-3)2-32+1=4故m=4再将(4,4)代入2-3+1有(4)2-34+1=5.故答案为:5.【点睛】本题考查了新定义下的实数运算,按照定义的运算公式代入计算即可.5、±6##6或-6 ±7 【分析】根据平方根的定义求解即可.【详解】解:∵(±6)2=36,∴当x2=36时,则x=±6;∵(-a)2=(7)2,∴a2=49,∵(±7)2=49,∴a=±7;故答案为:±6;±7.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根.0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.三、解答题1、【分析】根据立方根,算术平方根,绝对值的计算法则进行求解即可.【详解】解:.【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.2、(1);(2);(3)13cm【分析】(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;(2)将x=5代入计算可得;(3)根据题意列出方程求解即可.【详解】解:(1)空白部分面积为;(2)当x=5时,空白部分面积为.(3)根据题意得,,解得x=13或-13(舍去),所以,大正方形的边长为13cm【点睛】此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.3、(1)8;(2)0;(3)2;(4)【分析】(1)根据算术平方根的计算法则求解即可;(2)根据算术平方根的计算法则求解即可;(3)根据立方根的求解方法求解即可;(4)根据求平方根的方法解方程即可.【详解】解:(1),故答案为:8;(2),故答案为:0;(3)∵,∴的立方根是2,故答案为:2;(4)∵x2=(﹣7)2,∴x2=49,∴x=±7.故答案为:±7.【点睛】本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.4、(1);(2).【分析】(1)先计算乘方、立方根和算术平方根,再计算加减法即可得;(2)利用立方根解方程即可得.【详解】解:(1)原式;(2),,,,,.【点睛】本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.5、(1);(2)1;(3);(4)【分析】(1)由题意易得,则有的整数部分为3,然后问题可求解;(2)由题意易得,则有,,然后可得,然后根据完全平方公式可进行求解;(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;(4)根据题意可直接进行求解.【详解】解:(1)∵,∴的整数部分为3,∴的小数部分为;故答案为;(2)∵,∴,,∵与的小数部分分别为a和b,∴,∴;(3)由可知,∵,∴的小数部分为,∵x是整数,0<y<1,∴,∴;故答案为;(4)∵无理数(m为正整数)的整数部分为n,∴的小数部分为,∴的小数部分即为的小数部分加1,为;故答案为.【点睛】本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.6、4,49【分析】根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.【详解】解:∵正数有2个平方根,它们互为相反数,∴,解得,所以.【点睛】本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.7、x=5;y=2【分析】根据非负数的性质可得关于x、y的方程组,求解可得其值;【详解】解:由题意可得,联立得 ,解方程组得:,∴x、y的值分别为5、2.【点睛】此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.8、(1)1;(2)2【分析】(1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;(2)根据同分母分式的加减法法则计算.【详解】解:(1)原式=1+2-2 =1.(2)原式= = =2.【点睛】此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键..9、(1)12不是复合数;证明见解析;(2)98和56.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.【详解】(1)12不是复合数,∵找不到两个整数a,b,使a3﹣b3=12,故12不是复合数,设“正点”P所表示的数为x(x为正整数),则a=x﹣1,b=x+1,∴(x+1)3﹣(x﹣1)3 =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除;(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,∴m2﹣n2=7,∵m,n都是正整数,∴,∴,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.【点睛】本题考查关于实数的新定义题型,理解新定义是解题的关键.10、-10【分析】根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算.【详解】解:, , .【点睛】本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值.
相关试卷
这是一份数学七年级下册第十二章 实数综合与测试随堂练习题,共1页。试卷主要包含了下列说法正确的是,下列各数是无理数的是,下列说法,若,则的值为,64的立方根为.等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题,共1页。试卷主要包含了3的算术平方根为,下列各式正确的是.,的算术平方根是,已知a=,b=-|-|,c=,64的立方根为.等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步达标检测题,共1页。试卷主要包含了化简计算﹣的结果是,下列说法,下列整数中,与-1最接近的是,在以下实数,下列说法正确的是等内容,欢迎下载使用。