数学七年级下册第十二章 实数综合与测试复习练习题
展开沪教版(上海)七年级数学第二学期第十二章实数章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算正确的是( )
A. B. C. D.
2、实数2,0,﹣3,﹣中,最小的数是( )
A.﹣3 B.﹣ C.2 D.0
3、在,, 0, , , 0.010010001……, , -0.333…, , 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )
A.2个 B.3个 C.4个 D.5个
4、下列判断中,你认为正确的是( )
A.0的倒数是0 B.是分数 C.3<<4 D.的值是±3
5、下列实数比较大小正确的是( )
A. B. C. D.
6、实数在哪两个连续整数之间( )
A.3与4 B.4与5 C.5与6 D.12与13
7、下列说法正确的是( )
A.的相反数是 B.2是4的平方根
C.是无理数 D.
8、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )
A.4 B.6 C.12 D.36
9、在实数中,无理数的个数是( )
A.1 B.2 C.3 D.4
10、下列计算正确的是( ).
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、按一定规律排列的一列数:3,32,3﹣1,33,3-4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是______.
2、已知432=1849,442=1936,452=2025,462=2116,若n为整数,且n<<n+1,则n的值为 _____.
3、已知x2=36,那么x=___________;如果(-a)2=(7)2,那么a=_____________
4、比较大小: _____ (填“<”或“>”符号)
5、若是整数,则正整数的最小值是______.
三、解答题(10小题,每小题5分,共计50分)
1、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记.
例如:,∴,则
(1)判断7643和4631是否为“多多数”?请说明理由;
(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”.
2、计算:.
3、已知a、b互为倒数,c、d互为相反数,求-+(c+d)2+1的值.
4、如图是一个无理数筛选器的工作流程图.
(1)当x为16时,y值为______;
(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;
(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?
(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.
5、已知a2=16,b3=27,求ab的值.
6、计算下列各题:
(1);
(2).
(3).
7、计算:(π-4)0+|-6|-+
8、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为4∶3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.
9、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.
(1)用xcm表示图中空白部分的面积;
(2)当x=5cm时空白部分面积为多少?
(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?
10、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)
-参考答案-
一、单选题
1、B
【分析】
依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可.
【详解】
A、,故A错误;
B、,故B正确;
C.,故C错误;
D.−|-2|=-2,故D错误.
故选:B.
【点睛】
本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键.
2、A
【分析】
根据实数的性质即可判断大小.
【详解】
解:∵﹣3<﹣<0<2
故选A.
【点睛】
此题主要考查实数的大小比较,解题的关键是熟知实数的性质.
3、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=1,=2,,3,
∴无理数有,,,2.010101…(相邻两个1之间有1个0)共4个.
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
4、C
【分析】
根据倒数的概念即可判断A选项,根据分数的概念即可判断B选项,根据无理数的估算方法即可判断C选项,根据算术平方根的概念即可判断D选项.
【详解】
解:A、0不能作分母,所以0没有倒数,故本选项错误;
B、属于无理数,故本选项错误;
C、因为 9<15<16,所以 3<<4,故本选项正确;
D、的值是3,故本选项错误.
故选:C.
【点睛】
此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.
5、D
【分析】
根据有理数比较大小的法则对各选项进行比较即可.
【详解】
解:A、1>-4,故本选项错误;
B、-1000<-0.001,故本选项错误;
C、,故本选项错误;
D、,故本选项正确;
故选:D.
【点睛】
本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数; 两个负数,绝对值大的其值反而小.
6、B
【分析】
估算即可得到结果.
【详解】
解:,
,
故选:B.
【点睛】
本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.
7、B
【分析】
根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.
【详解】
解:A. 负数没有平方根,故无意义,A错误;
B.,故2是4的平方根,B正确;
C.是有理数,故C错误;
D. ,故D错误;
故选B.
【点睛】
本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.
8、D
【分析】
根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.
【详解】
解:∵一个正数a的两个不同平方根是2x-2和6-3x,
∴2x-2+6-3x=0,
解得:x=4,
∴2x-2=2×4-2=8-2=6,
∴正数a=62=36.
故选择D.
【点睛】
本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.
9、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=2,=2,,
∴无理数只有,共2个.
故选:B.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
10、D
【分析】
由负数没有算术平方根可判断A,由算术平方根不可能是负数可判断B,C,由立方根的含义可判断D,从而可得答案.
【详解】
解:没有意义,故A不符合题意;
,故B不符合题意;
,故C不符合题意;
,运算正确,故D符合题意;
故选D
【点睛】
本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.
二、填空题
1、bc=a
【分析】
首先判断出这列数中,3的指数各项依次为 1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,前两数相除等于第三个数,可得这列数中的连续三个数,满足a÷b=c,据此解答即可.
【详解】
∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,
,,,,,,…,
∴a,b,c满足的关系式是a÷b=c,即bc=a.
故答案为:bc=a.
【点睛】
此题考查了实数的规律问题,同底数幂的除法运算,负整数指数幂等知识,解题的关键是正确分析出题目中指数之间的规律.
2、44
【分析】
由已知条件的提示可得,即,从而可得答案.
【详解】
解:,
∴即
又∵,n为整数,
.
故答案为:44.
【点睛】
本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.
3、±6##6或-6 ±7
【分析】
根据平方根的定义求解即可.
【详解】
解:∵(±6)2=36,
∴当x2=36时,则x=±6;
∵(-a)2=(7)2,
∴a2=49,
∵(±7)2=49,
∴a=±7;
故答案为:±6;±7.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根.0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.
4、>
【分析】
根据实数比较大小的方法判断即可.
【详解】
∵正数大于一切负数,
∴ ,
故答案为:>.
【点睛】
此题主要考查实数的大小比较,熟练掌握实数比较大小的方法是解题的关键.
5、21
【分析】
由,要使是整数,则n必须是21的倍数,且这个倍数必须为整数的平方,由此可求得最小的整数n.
【详解】
∵
∴84n必须为21的整数的平方倍数,即,其中m为正整数
当m=1时,n最小,且最小值为21
故答案为:21
【点睛】
本题考查了算术平方根,算术平方根的性质,对84分解质因数、掌握可开得尽方的数的特征是关键.
三、解答题
1、
(1)7643是“多多数”, 4631不是“多多数”,
(2)5421或6734
【分析】
(1)根据新定义,即可判断;
(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出A、F(A),根据为一个能被13整除的“多多数”,且,,列出关系式,进而求解.
(1)
在7643中,7-4=3,6-3=3,
∴7643是“多多数”,
在4631中,3-3=1,6-1=5,
∴4631不是“多多数”,
(2)
设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,
∴A表示的数为
∴
∴
∵
∴
∴
∵个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,
∴,解得
∴x、y的范围为,且x、y为整数
∵若为一个能被13整除的“多多数”,
∴
当时,,,
y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是
同理,当时,,,没有符合条件的y;
当时,,,没有符合条件的y;
当时,,,符合条件的;
当时,,,没有符合条件的y;
当时,,,没有符合条件的y;
综上符合条件的是、
当时A为5421,
当时A为6734
综上足条件的“多多数”为5421或6734.
【点睛】
本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.
2、7
【分析】
根据实数的性质化简即可求解.
【详解】
解:原式
【点睛】
此题主要考查实数的混合运算,解题的关键是熟知负指数幂的运算法则.
3、0
【分析】
互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可.
【详解】
解:根据题意得:ab=1,c+d=0,
则-+(c+d)2+1的值=-1+0+1=0.
【点睛】
本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键.
4、
(1)
(2)0,1
(3)x<0
(4)x=3或x=9或x=81.
【分析】
(1)根据运算规则即可求解;
(2)根据0的算术平方根是0,即可判断;
(3)根据二次根式有意义的条件,被开方数是非负数即可求解;
(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.
(1)
解:当x=16时,,则y=;
故答案是:.
(2)
解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;
(3)
解:当x<0时,导致开平方运算无法进行;
(4)
解: x的值不唯一.x=3或x=9或x=81.
【点睛】
本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.
5、64或﹣64
【分析】
根据平方根、立方根、有理数的乘方解决此题.
【详解】
解:∵a2=16,b3=27,
∴a=±4,b=3.
当a=4,b=3时,ab=43=64.
当a=﹣4,b=3时,ab=(﹣4)3=﹣64.
综上:ab=64或﹣64.
【点睛】
本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.
6、
(1)-3
(2)-6x
(3)4y-3xz
【分析】
(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;
(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.
(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
(1)
解:原式
;
(2)
解:原式
;
(3)
解:
.
【点睛】
本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=anbn运算法则,整式的除法,理解a0=1(a≠0),(a≠0),牢记法则是解题关键.
7、9
【分析】
根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.
【详解】
解:原式
【点睛】
本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.
8、能,桌面长宽分别为28cm和21cm
【分析】
本题可设它的长为4x,则它的宽为3x,根据面积公式列出方程解答即可求出x的值,再代入长宽的表达式,看是否符合条件即可.
【详解】
能做到,理由如下:
设桌面的长和宽分别为4x(cm)和3x(cm),
根据题意得,4x×3x=588.
12x2=588.
(cm)
3x=3×7=21(cm).
∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm,
∴能够裁出一个长方形面积为588cm2并且长宽之比为4∶3的桌面,
答:桌面长宽分别为28cm和21cm.
【点睛】
本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点.
9、(1);(2);(3)13cm
【分析】
(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;
(2)将x=5代入计算可得;
(3)根据题意列出方程求解即可.
【详解】
解:(1)空白部分面积为;
(2)当x=5时,空白部分面积为.
(3)根据题意得,,
解得x=13或-13(舍去),
所以,大正方形的边长为13cm
【点睛】
此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.
10、第二种,理由见解析
【分析】
根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.
【详解】
解:第一种方法:1×10×365=3650元
第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元
∵10485.75>3650
∴第二种方法得到的钱多.
【点睛】
本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共22页。试卷主要包含了下列实数比较大小正确的是,下列说法正确的是,下列说法中错误的是,实数﹣2的倒数是,估计的值在,若 ,则等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题,共17页。试卷主要包含了下列运算正确的是,如果a,的相反数是等内容,欢迎下载使用。
数学第十二章 实数综合与测试课堂检测: 这是一份数学第十二章 实数综合与测试课堂检测,共1页。试卷主要包含了3的算术平方根为,下列判断中,你认为正确的是,估计的值在,下列各式正确的是.,﹣π,﹣3,,的大小顺序是等内容,欢迎下载使用。