初中第十二章 实数综合与测试巩固练习
展开
这是一份初中第十二章 实数综合与测试巩固练习,共1页。试卷主要包含了3的算术平方根是,下列各数中,比小的数是,在下列各数,16的平方根是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是( )A.2 B.4 C.8 D.62、对于两个有理数、,定义一种新的运算:,若,则的值为( )A. B. C. D.3、下列计算正确的是( ).A. B. C. D.4、3的算术平方根是( )A.±3 B. C.-3 D.35、下列各数中,比小的数是( )A. B.- C. D.6、在下列各数:、0.2、﹣π、、、0.101001中有理数的个数是( )A.1 B.2 C.3 D.47、16的平方根是( )A.±8 B.8 C.4 D.±48、已知2m﹣1和5﹣m是a的平方根,a是( )A.9 B.81 C.9或81 D.29、下列各数中,3.1415,,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )A.0个 B.1个 C.2个 D.3个10、下列说法不正确的是( )A.0的平方根是0 B.一个负数的立方根是一个负数C.﹣8的立方根是﹣2 D.8的算术平方根是2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果一个正数x的平方根是2a﹣3和5﹣a,那么x的值是 _____.2、近几年来魔术风靡我国,小亮发明了一个魔术盒,把一个实数对(,)放入其中,就得到一个数为2-3+1,如把(3,2)放入其中,就得到32-32+1=4,若把(-3,2)放入其中,得到数,再把(,4)放入其中,则得到的数是___________.3、 “平方根节”是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如:2009年的3月3日,2016年的4月4日.请写出你喜欢的一个“平方根节”(题中所举的例子除外)______年_____月_______日.4、比较大小:_____2(填“>”或“<”或“=”)5、若实数a、b、c满足+(b﹣c+1)2=0,则2b﹣2c+a=________.三、解答题(10小题,每小题5分,共计50分)1、计算:.2、阅读下面的文字,解答问题.现规定:分别用和表示实数x的整数部分和小数部分,如实数3.14的整数部分是,小数部分是;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即就是的小数部分,所以.(1) , ; , .(2)如果,,求的立方根.3、计算:4、计算:.5、对于一个三位自然数m,若m的百位数字等于两个一位正整数a与b的和,m的个位数字等于两个一位正整数a与b的差,m的十位数字等于b,则称m是“和差数”,规定.例如:723是“和差数”,因为,,,所以723是“和差数”,即.(1)填空:______.(2)请判断311是否是“和差数”?并说明理由;(3)若一个三位自然数(,,x、y是整数,即n的百位数字是9,十位数字是x,个位数字是y)为“和差数”,求所有满足条件的“和差数”n.6、有理数a,b如果满足,那么我们定义a,b为一组团结数对,记为<a,b>.例如:和,因为,所以,则称和为一组团结数对,记为<>.根据以上定义完成下列各题:(1)找出2和2,1和3,-2和这三组数中的团结数对,记为 ;(2)若<5,x>成立,则x的值为 ;(3)若<a,b>成立,b为按一定规律排列成1,-3,9,-27,81,-243,……这列数中的一个,且b与b左右两个相邻数的和是567,求a的值.7、如图,数轴的原点为O,点A、B、C是数轴上的三点,点B对应的数是1,AB=6,BC=2,动点P、Q同时分别从A、C出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).(1)点A表示的数为 ,点C表示的数为 ;(2)求t为何值时,点P与点Q能够重合?(3)是否存在某一时刻t,使点O平分线段PQ且点P与点Q在原点的异侧?若存在,请求出满足条件的t值.若不存在,请说明理由.8、如图是一个无理数筛选器的工作流程图.(1)当x为16时,y值为______;(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.9、已知a2=16,b3=27,求ab的值.10、(1)计算:(﹣)×(﹣1)2021+﹣;(2)求x的值:(3x+2)3﹣1=. -参考答案-一、单选题1、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.【详解】2n的个位数字是2,4,8,6循环,所以810÷4=202…2,则2810的末位数字是4.故选:B.【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键.2、D【分析】根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.【详解】解: , , ,解得: 故选D【点睛】本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.3、D【分析】由负数没有算术平方根可判断A,由算术平方根不可能是负数可判断B,C,由立方根的含义可判断D,从而可得答案.【详解】解:没有意义,故A不符合题意;,故B不符合题意;,故C不符合题意;,运算正确,故D符合题意;故选D【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.4、B【分析】根据算术平方根的定义求解即可,平方根:如果一个数的平方等于,那么这个数就叫的平方根,其中属于非负数的平方根称之为算术平方根.【详解】解:3的算术平方根是故选B【点睛】本题考查了算术平方根的定义,掌握定义是解题的关键.5、A【分析】直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.【详解】解:A. <-3,故A正确;B. ->-3,故B错误;C. >-3,故C错误;D. >-3,故D错误.故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.6、D【分析】有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解.【详解】解:,,∴在、0.2、-π、、、0.101001中,有理数有0.2、、、0.101001,共有4个.故选:D.【点睛】本题考查有理数的意义,掌握有理数的意义是正确判断的前提.7、D【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.8、C【分析】分两种情况讨论求解:当2m﹣1与5﹣m是a的两个不同的平方根和当2m﹣1与5﹣m是a的同一个平方根.【详解】解:若2m﹣1与5﹣m互为相反数,则2m﹣1+5﹣m=0,∴m=﹣4,∴5﹣m=5﹣(﹣4)=9,∴a=92=81,若2m﹣1=5﹣m,∴m=2,∴5﹣m=5﹣2=3,∴a=32=9,故选C.【点睛】本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.9、D【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.1415,0.321是有限小数,属于有理数;是分数,属于有理数;无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.故选:D.【点睛】此题考查了无理数.解题的关键是掌握实数的分类.10、D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案.【详解】解:A、0的平方根是0,原说法正确,故此选项不符合题意;B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D、8的算术平方根是2,原说法不正确,故此选项符合题意;故选:D.【点睛】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.二、填空题1、49【分析】一个正数的平方根性质是互为相反数得出2a﹣3+5﹣a=0,解方程求出a =-2,再求平方根,利用平方根求出原数即可【详解】解:∵一个正数x的平方根是2a﹣3和5﹣a,∴2a﹣3+5﹣a=0,解得a =-2,当a =-2时2a﹣3=-2×2-3=-7,∴x=(-7)2=49.故答案为:49.【点睛】本题考查一个正数x的平方根性质,一个正数有两个平方根,它们是互为相反数,0的平方根是0,负数没有平方根,根据平方根性质列方程是解题关键.2、5【分析】由魔术盒的性质可知m=(-3)2-32+1=4,故(4,4)在魔术盒中的数字为(4)2-34+1=5.【详解】将(-3,2)代入2-3+1有(-3)2-32+1=4故m=4再将(4,4)代入2-3+1有(4)2-34+1=5.故答案为:5.【点睛】本题考查了新定义下的实数运算,按照定义的运算公式代入计算即可.3、2025 5 5 【分析】首先确定月份和日子,最后确定年份即可.(答案不唯一).【详解】解:2025年5月5日.(答案不唯一).故答案是:2025,5,5.【点睛】本题考查了平方根的应用,解题的关键是正确理解三个数字的关系.4、>【分析】根据即可得出答案.【详解】∵,∴,故答案为:>.【点睛】本题主要考查的是比较实数的大小,熟练掌握相关知识是解题的关键.5、1【分析】利用绝对值以及平方数的非负性,求出的值、和的关系式,利用整体代入直接求出代数式的值.【详解】解:+(b﹣c+1)2=0,,, 故,, . 故答案为:1.【点睛】本题主要是考查了绝对值以及平方数的非负性、整体代入法求解代数式的值,熟练利用非负性,求出对应字母的值,利用整体代入法,求解代数式的值,这是解决本题的关键.三、解答题1、1【分析】根据平方根与立方根可直接进行求解.【详解】解:原式.【点睛】本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.2、(1)1,,3,;(2)2【分析】(1)先估算出和的范围,再根据题目规定的表示方法写出答案即可;(2)先估算出,的范围,即可求出a,b的值,进一步即可求出结果.【详解】(1)∵1<<2,3<<4,∴[]=1,<>=−1,[]=3,<>=−3,故答案为:1,,3,;(2)∵2<<3,10<<11,∴<>=a=−2,[]=b=10,∴,∴的立方根是2.【点睛】本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.3、【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.4、2﹣π.【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.【详解】解:=3﹣(π﹣)+(﹣1)﹣=3﹣π+﹣1﹣=2﹣π.【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.5、(1)412(2)是,理由见解析(3)941或933或925或917【分析】(1)根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,即可得解;(2)根据定义即可判断311是“和差数”;(3)由题意得到,解得,再结合a、b为正整数且,即可得解.(1)解:根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,故412.故答案为:412;(2)解:311是“和差数”,∵,,,∴是“和差数”;(3)解:∵(,,、是整数)∴∴∴,,,6、(1)<2,2>,<-2,>(2)(3)【解析】(1)和2是一组团结数,即为<>,和3不是一组团结数,和是一组团结数,即为<>,故答案为:<>,<>;(2)若<5,x>成立,则故答案为:;(3)设b左面相邻的数为x,b为-3x,b右面相邻的数为9x.由题意可得 解得 x=81 所以 b=-243 由于<a,b>成立,则a-243=-243a,解得.【点睛】本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键.7、(1)-5,3;(2)t=4;(3)存在,t=,理由见解析.【分析】(1)由点B对应的数及线段AB、BC的长,可找出点A、C对应的数;(2)根据点P、Q的出发点、速度及方向,由追击的等量关系列出含t的方程,解方程即可;(3)由题意得OP=OQ,据此列一元一次方程,解此方程即可.【详解】解:(1)1-6=-5,1+2=3即点A表示的数为 -5,点C表示的数为3,故答案为:-5,3;(2)若点P与点Q能够重合,则AP-CQ=AC,即3t-t=82t=8t=4答:当t=4时,点P与点Q能够重合.(3)存在,理由如下:若点O为PQ中点,且点P与点Q在原点的异侧,即OP=OQ5-3t=3+t4t=2t=答:当t=时,点O平分线段PQ且点P与点Q在原点的异侧.【点睛】本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键.8、(1)(2)0,1(3)x<0(4)x=3或x=9或x=81.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.(1)解:当x=16时,,则y=;故答案是:.(2)解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x<0时,导致开平方运算无法进行;(4)解: x的值不唯一.x=3或x=9或x=81.【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.9、64或﹣64【分析】根据平方根、立方根、有理数的乘方解决此题.【详解】解:∵a2=16,b3=27,∴a=±4,b=3.当a=4,b=3时,ab=43=64.当a=﹣4,b=3时,ab=(﹣4)3=﹣64.综上:ab=64或﹣64.【点睛】本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.10、(1);(2).【分析】(1)先计算乘方、立方根和算术平方根,再计算加减法即可得;(2)利用立方根解方程即可得.【详解】解:(1)原式;(2),,,,,.【点睛】本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习,共19页。试卷主要包含了若,则的值为,在以下实数,下列运算正确的是,下列各组数中相等的是,在0.1010010001…等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题,共20页。试卷主要包含了在实数中,无理数的个数是,下列四个数中,最小的数是,10的算术平方根是,下列说法正确的是,的相反数是,下列说法中,正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第十二章 实数综合与测试一课一练,共1页。试卷主要包含了下列说法中错误的是,在下列各数,下列说法正确的是,﹣π,﹣3,,的大小顺序是,下列说法中正确的有等内容,欢迎下载使用。