初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试精练
展开
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试精练,共1页。试卷主要包含了64的立方根为.,100的算术平方根是,若与互为相反数,则a,16的平方根是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、化简计算﹣的结果是( )A.12 B.4 C.﹣4 D.﹣122、在下列四个实数中,最大的数是( )A.0 B.﹣2 C.2 D.3、估计的值在( )A.5到6之间 B.6到7之间 C.7到8之间 D.8到9之间4、64的立方根为( ).A.2 B.4 C.8 D.-25、在,, 0, , , 0.010010001……, , -0.333…, , 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )A.2个 B.3个 C.4个 D.5个6、100的算术平方根是( )A.10 B. C. D.7、若与互为相反数,则a、b的值为( )A. B. C. D.8、16的平方根是( )A.±8 B.8 C.4 D.±49、如果x>1,那么x﹣1,x,x2的大小关系是( )A.x﹣1<x<x2 B.x<x﹣1<x2 C.x2<x<x﹣1 D.x2<x﹣1<x10、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是( )A.2 B.4 C.8 D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD是由四个长都为a,宽都为b(a>b)的小长方形拼接围成的.已知每个小长方形的周长为18,面积为,我们可以通过计算正方形ABCD面积的方法求出代数式a﹣b的值,则这个值为 _____.2、的算术平方根是_____,的立方根是_____,的倒数是_____.3、若,且a,b是两个连续的整数,则的值为______.4、若规定“※”的运算法则为:,例如:则 =_________.5、已知a,b 是有理数,且满足,那么a=________,b =________.三、解答题(10小题,每小题5分,共计50分)1、已知a,b互为相反数,c,d互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.2、计算:3、如果一个自然数的个位数字不为,且能分解成,其中与都是两位数,与的十位数字相同,个位数字之和为,则称数为“风雨数”,并把数分解成的过程,称为“同行分解”.例如:,和的十位数字相同,个位数字之和为,是“风雨数”.又如:,和的十位数字相同,但个位数字之和不等于,不是“风雨数”.(1)判断,是否是“风雨数”?并说明理由;(2)把一个“风雨数”进行“同行分解”,即,与之和记为,与差的绝对值记为,令,当能被整除时,求出所有满足条件的.4、如图,数轴的原点为O,点A、B、C是数轴上的三点,点B对应的数是1,AB=6,BC=2,动点P、Q同时分别从A、C出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).(1)点A表示的数为 ,点C表示的数为 ;(2)求t为何值时,点P与点Q能够重合?(3)是否存在某一时刻t,使点O平分线段PQ且点P与点Q在原点的异侧?若存在,请求出满足条件的t值.若不存在,请说明理由.5、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)6、求下列各数的立方根:(1)729(2)(3)(4)7、计算:.8、计算:(1)(2)9、如图是一个无理数筛选器的工作流程图.(1)当x为16时,y值为______;(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.10、计算:(1);(2)﹣16÷(﹣2)2. -参考答案-一、单选题1、B【分析】根据算术平方根和立方根的计算法则进行求解即可.【详解】解:,故选B.【点睛】本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.2、C【分析】先根据正数大于0,0大于负数,排除,,然后再用平方法比较2与即可.【详解】解:正数,负数,排除,,,,,,最大的数是2,故选:.【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.3、C【分析】将根号部分平方后得44即可看出,由此可判断其在6到7之间,再利用不等式的性质进行求解判断即可.【详解】∵,∴,∴,∴.故选:C.【点睛】本题考查二次根式的估值,关键在于利用平方法找到其大概的取值范围.4、B【分析】根据立方根的定义进行计算即可.【详解】解:∵43=64,∴实数64的立方根是,故选:B.【点睛】本题考查立方根,理解立方根的定义是正确解答的关键.5、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:=1,=2,,3,∴无理数有,,,2.010101…(相邻两个1之间有1个0)共4个.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6、A【分析】根据算术平方根的概念:一个正数x的平方等于a,即,那么这个正数x就叫做a的算术平方根,即可解答.【详解】解:∵,,(舍去)∴100的算术平方根是10,故选A.【点睛】本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念.7、D【分析】首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.【详解】解:∵与互为相反数,∴+=0,∴,得:,得:,解得:,将代入①得:,解得:.故选:D.【点睛】此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a、b的方程组并求解.8、D【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.9、A【分析】根据,即可得到,,由此即可得到答案.【详解】解:∵,∴,,∴,故选A.【点睛】本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法.10、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.【详解】2n的个位数字是2,4,8,6循环,所以810÷4=202…2,则2810的末位数字是4.故选:B.【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键.二、填空题1、6【分析】先求出小正方形面积=大正方形的面积减去4个长方形的面积,然后进行计算即可.【详解】解:由题意得:2(a+b)=18,ab=,∴a+b=9,∴(a﹣b)2=(a+b)2﹣4ab=81﹣45=36,又∵a>b,∴a﹣b=6,故答案为:6.【点睛】本题考查乘法公式的变形计算,平方根计算,掌握公式变形的方法用面积法,利用数形结合思想将问题简单化是解题关键2、9【分析】根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可.【详解】解:=81的算术平方根是9,=的立方根是,的倒数是,故答案为:-9,,.【点睛】本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.3、7【分析】先判断出的取值范围,确定a和b的值,即可求解.【详解】解:∵,∴a=3,b=4,∴a+b=7.故答案为:7.【点睛】本题考查了无理数的估算,正确估算出的取值范围是解题关键.4、-2【分析】依据定义的运算法则列式计算即可.【详解】==-2故答案为:-2.【点睛】本题考查了新定义下的实数运算,理解新定义的运算法则并列式是解题的关键.5、-2 -1 【分析】利用平方与算术平方根的非负性即可解决.【详解】∵,,且∴,∴,故答案为:-2,-1【点睛】本题考查了有理数的平方的非负性质及算术平方根的非负性质,即几个非负数的和为零,则这几个数都为零.掌握这个性质是本题的关键.三、解答题1、-1【分析】由题意可知,,,,将值代入即可.【详解】解:由题意得:,;解得∴.【点睛】本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.2、【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.3、(1)195是“风雨数”,621不是“风雨数”,理由见解析;;(2)或或或【分析】根据新定义的“风雨数”即可得出答案;设的十位数为,个位数为,则为,根据能被整除求出的可能的值,再由的值求出的值即可得出答案.【详解】解:,且,是“风雨数”,,,不是“风雨数”;设,则,,,能被整除,,为整数,,是的倍数,满足条件的有,,若,则,为整数,,是的因数,,,,,满足条件的有,,,,,或,或,或,,或,若,则,为整数,,是的因数,,,,,,,,,满足条件的有,,,,,或,或,或,,或,综上,的值为或或或.【点睛】本题是新定义题,主要考查了列代数式,一元一次方程的应用,关键是准确理解“风雨数”含义,能把和用含和的式子表示出来.4、(1)-5,3;(2)t=4;(3)存在,t=,理由见解析.【分析】(1)由点B对应的数及线段AB、BC的长,可找出点A、C对应的数;(2)根据点P、Q的出发点、速度及方向,由追击的等量关系列出含t的方程,解方程即可;(3)由题意得OP=OQ,据此列一元一次方程,解此方程即可.【详解】解:(1)1-6=-5,1+2=3即点A表示的数为 -5,点C表示的数为3,故答案为:-5,3;(2)若点P与点Q能够重合,则AP-CQ=AC,即3t-t=82t=8t=4答:当t=4时,点P与点Q能够重合.(3)存在,理由如下:若点O为PQ中点,且点P与点Q在原点的异侧,即OP=OQ5-3t=3+t4t=2t=答:当t=时,点O平分线段PQ且点P与点Q在原点的异侧.【点睛】本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键.5、第二种,理由见解析【分析】根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.【详解】解:第一种方法:1×10×365=3650元第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元∵10485.75>3650∴第二种方法得到的钱多.【点睛】本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.6、(1)9;(2);(3);(4)-5【分析】根据立方根的定义,找到一个数,使其立方等于已知的数,从而可得答案.【详解】解:(1)因为93=729,所以729的立方根是9,即;(2),因为,所以的立方根是,即;(3)因为,所以的立方根是,即;(4).【点睛】本题考查的是求解一个数的立方根,掌握“利用立方根的含义求解一个数的立方根”是解本题的关键.7、1【分析】直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、有理数的乘方运算法则分别化简,再利用有理数的加减运算法则计算得出答案.【详解】解:=1+3﹣2﹣1=1.【点睛】本题主要考查了实数的混合运算,熟练掌握相关运算法则是解答本题的关键.8、(1);(2)【分析】(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可.【详解】解:(1)===;(2) ===.【点睛】本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键.9、(1)(2)0,1(3)x<0(4)x=3或x=9或x=81.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.(1)解:当x=16时,,则y=;故答案是:.(2)解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x<0时,导致开平方运算无法进行;(4)解: x的值不唯一.x=3或x=9或x=81.【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.10、(1)(2)【分析】(1)根据有理数的混合运算进行计算即可;(2)先根据求一个数的立方根求得为,进而根据有理数的混合运算进行计算即可【详解】(1)原式(2)原式【点睛】本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共1页。试卷主要包含了a为有理数,定义运算符号▽,下列实数比较大小正确的是,有一个数值转换器,原理如下,下列计算正确的是.等内容,欢迎下载使用。
这是一份初中数学第十二章 实数综合与测试课堂检测,共1页。试卷主要包含了在0.1010010001…,观察下列算式,在实数中,无理数的个数是,若关于x的方程,下列四个数中,最小的数是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共1页。试卷主要包含了如果a,下列说法正确的是,估计的值应该在.,下列各数中,比小的数是,4的平方根是等内容,欢迎下载使用。