终身会员
搜索
    上传资料 赚现金

    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数综合测评试卷(含答案解析)

    立即下载
    加入资料篮
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数综合测评试卷(含答案解析)第1页
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数综合测评试卷(含答案解析)第2页
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数综合测评试卷(含答案解析)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试课堂检测

    展开

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课堂检测,共1页。试卷主要包含了有一个数值转换器,原理如下,下列说法正确的是,已知a=,b=-|-|,c=等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在下列四个选项中,数值最接近的是(    A.2 B.3 C.4 D.52、下列各数是无理数的是(    A.-3 B. C.2.121121112 D.3、下列说法中正确的有(  )①±2都是8的立方根 x的平方根是3   ④﹣=2.A.1个 B.2个 C.3个 D.4个4、有一个数值转换器,原理如下:当输入的x为64时,输出的y是(    A. B.2 C. D.5、在﹣3,0,2,这组数中,最小的数是(  )A. B.﹣3 C.0 D.26、下列说法正确的是(  A.0.01是0.1的平方根 B.小于0.5C.的小数部分是D.任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方……如此进行下去,得到的数会越来越趋近17、已知ab=-|-|,c=(-2)3,则abc的大小关系是(    A.bac B.bca C.cba D.acb8、一个正数的两个平方根分别是2a,则a的值为(    A.1 B.﹣1 C.2 D.﹣29、若一个数的算术平方根与它的立方根的值相同,则这个数是(   )A.1 B.0和1 C.0 D.非负数10、16的平方根是(  )A.±8 B.8 C.4 D.±4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若|2y+1|=0,则xy2的值是_____.2、已知xy满足关系式=0,则xy的算术平方根为______.3、比较大小:﹣|﹣4|______﹣π.(填“>”、“=”或“<”)4、的整数部分是_____________.5、当______ 时,分式的值为零三、解答题(10小题,每小题5分,共计50分)1、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,…,这样的分式是假分式;像,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:.解决下列问题:(1)写出一个假分式为:    (2)将分式化为整式与真分式的和的形式为:    ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值.2、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为参考小燕同学的做法,解答下列问题:(1)写出的小数部分为________;(2)已知的小数部分分别为ab,求a2+2abb2的值;(3)如果,其中x是整数,0<y<1,那么=________(4)设无理数m为正整数)的整数部分为n,那么的小数部分为________(用含mn的式子表示).3、如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为(1)图1中阴影正方形的边长为      ;点P表示的实数为      (2)如图2,在4×4方格中阴影正方形的边长为a.①写出边长a的值.②请仿照(1)中的作图在数轴上表示实数﹣a+1.4、计算:(1)(2)5、已知ab互为倒数,cd互为相反数,求-+(cd)2+1的值.6、已知a2=16,b3=27,求ab的值.7、解方程:(1)x2=81;(2)(x﹣1)3=27.8、计算:9、已知xy满足,求xy的值.10、求下列各数的算术平方根:(1)0.64            (2) -参考答案-一、单选题1、A【分析】根据无理数的估算先判断,进而根据,进而可以判断,即可求得答案【详解】解:,即更接近2故选A【点睛】本题考查了无理数的估算,掌握无理数的估算是解题的关键.2、D【分析】根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.【详解】A、-3是整数,属于有理数.B、是分数,属于有理数.C、2.121121112是有限小数,属于有理数.D、是无限不循环小数,属于无理数.故选:D.【点睛】本题主要是考察无理数的概念,初中数学中常见的无理数主要是:等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.3、B【分析】根据平方根和立方根的定义进行判断即可.【详解】解:①2是8的立方根,-2不是8的立方根,原说法错误;=x,正确;,9的平方根是3,原说法错误;④﹣=2,正确;综上,正确的有②④共2个,故选:B.【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.4、C【分析】直接利用立方根以及算术平方根、无理数分析得出答案.【详解】解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是故选:C.【点睛】本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.5、B【分析】先确定3与的大小,再确定四个数的大小顺序,由此得到答案.【详解】解:∵9>7,∴3>∴-3<∴-3<<0<2,故选:B【点睛】此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键.6、C【分析】根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可.【详解】解:A、0.1是0.01的平方根,原说法错误,不符合题意;B、由,得,原说法错误,不符合题意;C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;故选:C.【点睛】本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键.7、C【分析】本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较.【详解】解:由题意得:a===4,b==c=-8,cba故选:C.【点睛】本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键.8、D【分析】根据正数有两个平方根,且互为相反数,即可求解.【详解】解:根据题意得:解得:故选:D【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.9、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B.【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.10、D【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.二、填空题1、【分析】先根据算术平方根和绝对值的非负性求出的值,再代入计算即可得.【详解】解:解得故答案为:【点睛】本题考查了算术平方根和绝对值的非负性、代数式求值,熟练掌握算术平方根和绝对值的非负性是解题关键.2、4【分析】直接利用算术平方根以及偶次方的性质得出xy的值,进而得出答案.【详解】解:∵x+4=0,y-2=0,解得:x=-4,y=2,xy=(-4)2=16,16的算术平方根是:4.故答案为:4.【点睛】本题主要考查了算术平方根以及偶次方的性质,正确得出xy的值是解题关键.3、【分析】先化简绝对值,再根据实数的大小比较法则即可得.【详解】解:因为所以,即故答案为:【点睛】本题考查了绝对值、实数的大小比较,熟练掌握实数的大小比较法则是解题关键.4、3【分析】先估算的近似值,然后进行计算即可.【详解】解:的整数部分是3,故答案为3.【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握求一个数的平方.5、【分析】由分式的值为0的条件可得:,再解方程与不等式即可得到答案.【详解】解: 分式的值为零, 由①得: 由②得: 综上: 故答案为:【点睛】本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.三、解答题1、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案.(2)根据题意给出的变形方法即可求出答案.(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一). (2)故答案为:(3)∵x2=±1或x2=±2,x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.2、(1);(2)1;(3);(4)【分析】(1)由题意易得,则有的整数部分为3,然后问题可求解;(2)由题意易得,则有,然后可得,然后根据完全平方公式可进行求解;(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;(4)根据题意可直接进行求解.【详解】解:(1)∵的整数部分为3,的小数部分为故答案为(2)∵的小数部分分别为ab(3)由可知的小数部分为x是整数,0<y<1,故答案为(4)∵无理数m为正整数)的整数部分为n的小数部分为的小数部分即为的小数部分加1,为故答案为【点睛】本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.3、(1),1+;(2)①;②见解析【分析】(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;(2)①先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;②由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为【详解】解:(1)正方形ABCD的面积为:正方形ABCD的边长为:由题意得:点表示的实数为:故答案为:(2)①阴影部分正方形面积为:求其算术平方根可得:②如图所示:表示的数即为【点睛】本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键.4、(1);(2).【分析】(1)由题意利用算术平方根和立方根的性质进行化简计算即可;(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.【详解】解:(1)(2)【点睛】本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.5、0【分析】互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可.【详解】解:根据题意得:ab=1,cd=0,则-+(cd)2+1的值=-1+0+1=0.【点睛】本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键.6、64或﹣64【分析】根据平方根、立方根、有理数的乘方解决此题.【详解】解:∵a2=16,b3=27,a=±4,b=3.a=4,b=3时,ab=43=64.a=﹣4,b=3时,ab=(﹣4)3=﹣64.综上:ab=64或﹣64.【点睛】本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.7、(1)x=±9;(2)x=4【分析】(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.【详解】解:(1)开方得:x=±9;(2)开立方得:x﹣1=3,解得:x=4.【点睛】本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).8、2﹣π【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.【详解】解:=3﹣(π﹣)+(﹣1)﹣=3﹣π+﹣1﹣=2﹣π.【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.9、x=5;y=2【分析】根据非负数的性质可得关于xy的方程组,求解可得其值;【详解】解:由题意可得联立得解方程组得:xy的值分别为5、2.【点睛】此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.10、 (1) 0.8; (2) 【分析】根据算术平方根的定义求解即可.【详解】解:(1)因为0.82=0.64,所以0.64的算术平方根是0.8,即=0.8.(2)因为所以的算术平方根是,即【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根. 

    相关试卷

    数学七年级下册第十二章 实数综合与测试达标测试:

    这是一份数学七年级下册第十二章 实数综合与测试达标测试,共1页。试卷主要包含了下列各数是无理数的是,的值等于,下列说法不正确的是等内容,欢迎下载使用。

    初中第十二章 实数综合与测试巩固练习:

    这是一份初中第十二章 实数综合与测试巩固练习,共1页。试卷主要包含了a为有理数,定义运算符号▽,4的平方根是,下列说法中,正确的是,可以表示,下列各式中正确的是等内容,欢迎下载使用。

    数学七年级下册第十二章 实数综合与测试课后作业题:

    这是一份数学七年级下册第十二章 实数综合与测试课后作业题,共1页。试卷主要包含了关于的叙述,错误的是,下列各数中,最小的数是,若,则的值为,下列说法正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map