搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数定向训练练习题(无超纲)

    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数定向训练练习题(无超纲)第1页
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数定向训练练习题(无超纲)第2页
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数定向训练练习题(无超纲)第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试练习

    展开

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共1页。试卷主要包含了三个实数,2,之间的大小关系,4的平方根是,关于的叙述,错误的是,估算的值是在之间等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、3的算术平方根为(    A. B.9 C.±9 D.±2、的值等于(    A. B.-2 C. D.23、下列说法中正确的有(  )①±2都是8的立方根 x的平方根是3   ④﹣=2.A.1个 B.2个 C.3个 D.4个4、三个实数,2,之间的大小关系(  )A.>2 B.>2> C.2> D.<2<5、4的平方根是(  )A.±2 B.﹣2 C.2 D.46、点A在数轴上的位置如图所示,则点A表示的数可能是(    A. B. C. D.7、关于的叙述,错误的是(  )A.是无理数B.面积为8的正方形边长是C.的立方根是2D.在数轴上可以找到表示的点8、在, 0, , 0.010010001……, , -0.333…,   3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有(      A.2个 B.3个 C.4个 D.5个9、估算的值是在(    )之间A.5和6 B.6和7 C.7和8 D.8和910、下列语句正确的是(  )A.8的立方根是2 B.﹣3是27的立方根C.的立方根是± D.(﹣1)2的立方根是﹣1第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若的平方根是±4,则a=___.2、若实数满足,则=_____________.3、对于实数ab,定义运算“*”如下:a*b=(a+b2﹣(ab2.若(m+2)*(m﹣3)=24,则m的值为______.4、如果,那么=_____.5、计算: = ______.三、解答题(10小题,每小题5分,共计50分)1、计算:2、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为abab).定义:若数mb3a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3a3=(ba)(b2+ab+a2).)(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.3、计算:(1)(2)+(24、计算:+++5、已知ab互为相反数,cd互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.6、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)7、已知:,求x+17的算术平方根.8、计算:9、计算:(1)18+(﹣17)+7+(﹣8);(2)×(﹣12);(3)﹣22+|﹣1|+10、(1)计算:(2)分解因式: -参考答案-一、单选题1、A【分析】利用算术平方根的定义求解即可.【详解】3的算术平方根是故选:A.【点睛】本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.2、D【分析】由于表示4的算术平方根,由此即可得到结果.【详解】解:∵4的算术平方根为2,的值为2.故选D.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.3、B【分析】根据平方根和立方根的定义进行判断即可.【详解】解:①2是8的立方根,-2不是8的立方根,原说法错误;=x,正确;,9的平方根是3,原说法错误;④﹣=2,正确;综上,正确的有②④共2个,故选:B.【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.4、A【分析】,根据被开方数的大小即判断这三个数的大小关系【详解】2<故选A【点睛】本题考查了实数大小比较,掌握无理数的估算是解题的关键.5、A【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根.【详解】解:∵∴4的平方根是故选:A.【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.6、A【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A表示的数在4至4.5之间,A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;B、∵9<10<16,∴3<<4,故该选项不符合题意;C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;D、∵25<30<36,∴5<<6,故该选项不符合题意;故选:A.【点睛】本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.7、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.【详解】解:A是无理数,该说法正确,故本选项不符合题意;B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;C、8的立方根是2,该说法错误,故本选项符合题意;D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.8、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:=1,=2,,3,∴无理数有,2.010101…(相邻两个1之间有1个0)共4个.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9、C【分析】根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故【详解】故选:C.【点睛】本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.10、A【分析】利用立方根的运算法则,进行判断分析即可.【详解】解:A、8的立方根是2,故A正确.B、3是27的立方根,故B错误.C、的立方根是,故C错误.D、(﹣1)2的立方根是1,故D错误.故选:A.【点睛】本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.二、填空题1、256【分析】根据平方根与算术平方根的定义即可求解.【详解】解:∵的平方根是±4,故答案为:256.【点睛】此题主要考查实数的性质,解题的关键是熟知平方根与算术平方根的定义:如果,那么就叫做b的平方根,如果对于两个正数有,则ab的算术平方根.2、1【分析】根据绝对值与二次根式的非负性求出ab的值,故可求解.【详解】解:∵a-2=0,b-4=0a=2,b=4=故答案为:1.【点睛】此题主要考查代数式求值,解题的关键是熟知非负性的运用.3、或4【分析】先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得.【详解】解:由题意得:,即解得故答案为:或4.【点睛】本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.4、【分析】本题可利用立方根的定义直接求解.【详解】故填:【点睛】本题考查立方根的定义:如果一个数的立方等于a,则这个数称为a的立方根使用时和平方根定义对比记忆.5、##【分析】根据求一个数的立方根,化简绝对值,求一个数的算术平方根,进行实数的混合运算【详解】解:故答案为:【点睛】本题考查了一个数的立方根,化简绝对值,求一个数的算术平方根,掌握以上知识是解题的关键.三、解答题1、2【分析】根据算术平方根与立方根的定义即可完成.【详解】解:【点睛】本题是实数的运算,考查了算术平方根的定义、立方根的定义,关键是掌握两个定义,要注意的是负数没有平方根,而任何实数都有立方根.2、(1)12不是复合数;证明见解析;(2)98和56.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.【详解】(1)12不是复合数,∵找不到两个整数ab,使a3b3=12,故12不是复合数,设“正点”P所表示的数为xx为正整数),ax﹣1,bx+1,∴(x+1)3﹣(x﹣1)3 =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除;(2)设两个复合数为6m2+2和6n2+2(mn都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,m2n2=7,mn都是正整数,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.【点睛】本题考查关于实数的新定义题型,理解新定义是解题的关键.3、(1);(2)【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.【详解】(1)原式(2)原式【点睛】此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.4、【分析】先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.【详解】解:原式【点睛】本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.5、-1【分析】由题意可知,将值代入即可.【详解】解:由题意得:解得【点睛】本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.6、第二种,理由见解析【分析】根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.【详解】解:第一种方法:1×10×365=3650元第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元∵10485.75>3650∴第二种方法得到的钱多.【点睛】本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.7、3【分析】首先根据,求出x的值,然后代入x+17求解算术平方根即可.【详解】解:∵∴5x+32=-8,解得:x=-8,x+17=-8+17=9,∵9的算术平方根为3,x+17的算术平方根为 3,故答案为:3.【点睛】此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.8、1【分析】根据平方根与立方根可直接进行求解.【详解】解:原式【点睛】本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.9、(1)0;(2)1;(3)【分析】(1)根据有理数的加法计算法则求解即可;(2)根据有理数的乘法分配律求解即可;(3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可.【详解】解:(1) (2)(3)【点睛】本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键.10、(1);(2)【分析】(1)先计算乘方运算,求解算术平方根,化简绝对值,再合并即可;(2)提取公因式即可.【详解】解:(1)解:原式(2)解:原式【点睛】本题考查的是立方根的含义,绝对值的化简,实数的运算,提公因式法分解因式,掌握“实数的运算及提公因式分解因式”是解本题的关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共21页。试卷主要包含了下列四个数中,最小的数是,的值等于,已知a=,b=-|-|,c=,实数在哪两个连续整数之间,下列说法等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题:

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共21页。试卷主要包含了下列实数比较大小正确的是,下列等式正确的是,若 ,则,有一个数值转换器,原理如下等内容,欢迎下载使用。

    初中数学第十二章 实数综合与测试当堂达标检测题:

    这是一份初中数学第十二章 实数综合与测试当堂达标检测题,共20页。试卷主要包含了4的平方根是,下列说法正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map