


初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共1页。试卷主要包含了在下列各数,下列说法中错误的是,的算术平方根是,实数在哪两个连续整数之间等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、可以表示( )A.0.2的平方根 B.的算术平方根C.0.2的负的平方根 D.的立方根2、以下正方形的边长是无理数的是( )A.面积为9的正方形 B.面积为49的正方形C.面积为8的正方形 D.面积为25的正方形3、的相反数是( )A.﹣ B. C. D.34、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是( )A.6cm B.12cm C.18cm D.24cm5、在下列各数:、0.2、﹣π、、、0.101001中有理数的个数是( )A.1 B.2 C.3 D.46、点A在数轴上的位置如图所示,则点A表示的数可能是( )A. B. C. D.7、下列说法中错误的是( )A.9的算术平方根是3 B.的平方根是C.27的立方根为 D.平方根等于±1的数是18、的算术平方根是( )A. B. C. D.9、实数在哪两个连续整数之间( )A.3与4 B.4与5 C.5与6 D.12与1310、100的算术平方根是( )A.10 B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是一个“数值转换机”的示意图,若输入的x的值为﹣2,输出的值为﹣,则输入的y值为 _____.2、如图,A,B,C在数轴上对应的点分别为a,﹣1,,其中a<﹣1,且AB=BC,则|a|=_____.3、已知(x﹣y+3)2+=0,则(x+y)2021=___.4、若一个正数的两个平方根分别为,则_____ ,这个正数是_________.5、下列各数:-1、、、,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是______.三、解答题(10小题,每小题5分,共计50分)1、求下列各式的值:(1)(2)(3)2、计算:(π-4)0+|-6|-+3、计算:(1);(2).4、已知a、b互为倒数,c、d互为相反数,求-+(c+d)2+1的值.5、已知a,b,c,d是有理数,对于任意,我们规定:.例如:.根据上述规定解决下列问题:(1)_________;(2)若,求的值;(3)已知,其中是小于10的正整数,若x是整数,求的值.6、如果一个四位数m满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为,十位数字与个位数字之和记为,记F(m),若F(m)为整效,则称这个数为“运算数“,例如:∵F(5332)3,3是整数,∴5332是“运算数”;∵F(1722),不是整数,∴1722不是“运算数”.(1)请判断9981与2314是否是“运算数”,并说明理由.(2)若自然数s和t都是“运算数”,其中s=8910+11x(2≤x≤8,且x为整数);t的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且F(t)=4,规定:k,求所有k的值.7、计算:(1); (2).8、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,,…,这样的分式是假分式;像,,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:;.解决下列问题:(1)写出一个假分式为: ;(2)将分式化为整式与真分式的和的形式为: ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值.9、求下列各式中的x:(1);(2).10、把下列各数分别填入相应的集合里.,,0,,,,,,0.1010010001…(每两个1之间依次多一个0)(1)整数集合:{ …}(2)正数集合:{ …}(3)无理数集合:{ …} -参考答案-一、单选题1、C【分析】根据平方根和算术平方根的定义解答即可.【详解】解:可以表示0.2的负的平方根,故选:C.【点睛】此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.2、C【分析】理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.【详解】解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;C、面积为8的正方形的边长为,是无理数,故本选项符合题意;D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.故选:C.【点睛】本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.3、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】解:的相反数是﹣,故选:A.【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.4、D【分析】由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.【详解】解:∵每个小立方体的体积为216cm3,∴小立方体的棱长,由三视图可知,最高处有四个小立方体,∴该几何体的最大高度是4×6=24cm,故选D.【点睛】本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.5、D【分析】有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解.【详解】解:,,∴在、0.2、-π、、、0.101001中,有理数有0.2、、、0.101001,共有4个.故选:D.【点睛】本题考查有理数的意义,掌握有理数的意义是正确判断的前提.6、A【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A表示的数在4至4.5之间,A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;B、∵9<10<16,∴3<<4,故该选项不符合题意;C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;D、∵25<30<36,∴5<<6,故该选项不符合题意;故选:A.【点睛】本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.7、C【分析】根据平方根,算术平方根,立方根的性质,即可求解.【详解】解:A、9的算术平方根是3,故本选项正确,不符合题意;B、因为 ,4的平方根是 ,故本选项正确,不符合题意;C、27的立方根为3,故本选项错误,符合题意;D、平方根等于±1的数是1,故本选项正确,不符合题意;故选:C【点睛】本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.8、A【分析】根据算术平方根的定义即可完成.【详解】∵ ∴的算术平方根是 即 故选:A【点睛】本题考查了算术平方根的计算,掌握算术平方根的定义是关键.9、B【分析】估算即可得到结果.【详解】解:,,故选:B.【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.10、A【分析】根据算术平方根的概念:一个正数x的平方等于a,即,那么这个正数x就叫做a的算术平方根,即可解答.【详解】解:∵,,(舍去)∴100的算术平方根是10,故选A.【点睛】本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念.二、填空题1、-3【分析】利用程序图列出式子,根据等式的性质和立方根的意义即可求得y值.【详解】解:由题意得:[(﹣2)2+y3]÷2=﹣.∴4+y3=﹣23.∴y3=﹣27.∵(﹣3)3=﹣27,∴y=﹣3.故答案为:﹣3.【点睛】本题主要考查了根据程序框图列式计算,立方根的性质,准确计算是解题的关键.2、【分析】先根据数轴上点的位置求出,即可得到,由此求解即可.【详解】解:∵A,B,C在数轴上对应的点分别为a,﹣1, ,∴,∴,∴,∴,故答案为:.【点睛】本题主要考查了实数与数轴,解题的关键在于能够根据题意求出.3、1【分析】由(x﹣y+3)2+=0,可得方程组,再解方程组,代入代数式计算即可得到答案.【详解】解: (x﹣y+3)2+=0, 解得: 故答案为:1【点睛】本题考查的是偶次方与算术平方根的非负性,掌握“若 则”是解题的关键.4、 【分析】根据平方根的性质,可得 ,从而得到 ,即可求解.【详解】解:∵一个正数的两个平方根分别为,∴ ,解得: ,∴这个正数为 .故答案为: ;【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数是解题的关键.5、3【分析】无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定.【详解】在-1、、、,0.1010010001…(相邻两个1之间0的个数增加1)中,无理数有,,0.1010010001…(相邻两个1之间0的个数增加1)共3个.故答案为:3.【点睛】本题考查了实数的分类,理解有理数与无理数的概念是解题的关键.三、解答题1、(1)6;(2);(3)【分析】利用立方与开立方互为逆运算进行化简求值.【详解】解:(1)(2)(3).【点睛】本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.2、9【分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.3、(1)1;(2)【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.【详解】解:(1),=,=1;(2),=,=,=,=.【点睛】本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键.4、0【分析】互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可.【详解】解:根据题意得:ab=1,c+d=0,则-+(c+d)2+1的值=-1+0+1=0.【点睛】本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键.5、(1)-5(2)(3)k=1,4,7.【分析】(1)根据规定代入数据求解即可;(2)根据规定代入整式,利用方程的思想求解即可;(3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.(1)解:;(2)解:即:(3)解:,即:因为是小于10的正整数且x是整数,所以k=1时,x=3;k=4时,x=4;k=7时,x=5.所以k=1,4,7.【点睛】本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.6、(1)9981是“运算数”,2314不是“运算数”;(2)738.5【分析】(1)根据“运算数”的定义计算即可;(2)根据找出,设,其中,且为整数,由,找出的值,代入中即可得解.【详解】(1),9是整数,∴9981是“运算数”,,不是整数,∴2314不是“运算数”;(2),且为整数,可为:8932,8943,8954,8965,8976,8987,8998,是“运算数”,,,的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,设百位上的数字为,个位数上的数字为,则千位上的数字为,十位上的数字为,其中且为整数,,,,即,当时,,其他情况不满足题意,,.【点睛】本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.7、(1)1;(2)2【分析】(1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;(2)根据同分母分式的加减法法则计算.【详解】解:(1)原式=1+2-2 =1.(2)原式= = =2.【点睛】此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键..8、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案.(2)根据题意给出的变形方法即可求出答案.(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一). (2); 故答案为:;(3)∵,∴x2=±1或x2=±2,∴x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.9、(1);(2)【分析】(1)方程整理后,开方即可求出x的值;(2)方程开立方即可求出x的值.【详解】(1)等式两边同时除以2得:,两边开平方得:;(2)两边开立方得:,等式两边同时减去1得:.【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键.10、(1)整数集合:;(2)正数集合:;(3)无理数集合:.【分析】根据实数分类解题,实数分为有理数与无理数,无限不循环小数和开方不能开尽的数是无理数,整数和分数统称为有理数,整数包含正整数、0、负整数, (1)根据整数的分类即可得;(2)根据正数的分类即可得;(3)根据无理数的分类即可得.【详解】解:+5是正整数,是无理数, 0是整数,-3.14是正分数,是正分数,-12是负整数,是负无理数,是正整数,(每两个1之间依次多一个0)是无理数;故(1)整数集合:;(2)正数集合:;(3)无理数集合:.【点睛】本题考查实数的分类、有理数的分类等知识,掌握相关数的分类是解题关键.
相关试卷
这是一份沪教版 (五四制)第十二章 实数综合与测试同步训练题,共22页。试卷主要包含了下列说法正确的是,下列各组数中相等的是,9的平方根是,化简计算﹣的结果是,的值等于等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题,共21页。试卷主要包含了下列各数中,比小的数是,下列各组数中相等的是,下列说法正确的是,100的算术平方根是,估计的值应该在.,估计的值在等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共20页。试卷主要包含了下列实数比较大小正确的是,估算的值是在之间,计算2﹣1+30=,下列各数中,最小的数是,若 ,则等内容,欢迎下载使用。