搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数难点解析练习题(无超纲)

    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数难点解析练习题(无超纲)第1页
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数难点解析练习题(无超纲)第2页
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数难点解析练习题(无超纲)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第十二章 实数综合与测试课后复习题

    展开

    这是一份数学七年级下册第十二章 实数综合与测试课后复习题,共1页。试卷主要包含了化简计算﹣的结果是,下列说法正确的是,下列各组数中相等的是,﹣π,﹣3,,的大小顺序是,a为有理数,定义运算符号▽,下列判断中,你认为正确的是等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、估计的值在(    A.5到6之间 B.6到7之间 C.7到8之间 D.8到9之间2、的算术平方根是(    A. B. C. D.3、在实数,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有(    )个A.2 B.3 C.4 D.54、化简计算的结果是(    A.12 B.4 C.﹣4 D.﹣125、下列说法正确的是(  )A.是分数B.0.1919919991…(每相邻两个1之间9的个数逐次加1)是有理数C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式﹣的次数是2,系数为﹣6、下列各组数中相等的是(    A.和3.14 B.25%和 C.和0.625 D.13.2%和1.327、﹣π,﹣3,的大小顺序是(  )A. B.C. D.8、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽aa;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为(  )A. B.7 C. D.19、下列判断中,你认为正确的是(  )A.0的倒数是0 B.是分数 C.3<<4 D.的值是±310、64的立方根为(    ).A.2 B.4 C.8 D.-2第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、实数在数轴上的位置如图所示,则化简的结果为________.2、立方等于-27的数是__________.3、计算____________;4、如果,那么=_____.5、的算术平方根是 _____;﹣64的立方根是 _____.三、解答题(10小题,每小题5分,共计50分)1、已知的立方根是2,算术平方根是4,求的算术平方根.2、计算:(1)(2)+(23、已知正数a的两个不同平方根分别是2x﹣2和6﹣3xa﹣4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b2+3a﹣8的立方根.4、如果一个四位数m满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为,十位数字与个位数字之和记为,记Fm,若Fm)为整效,则称这个数为“运算数“,例如:∵F(5332)3,3是整数,∴5332是“运算数”;∵F(1722)不是整数,∴1722不是“运算数”.(1)请判断9981与2314是否是“运算数”,并说明理由.(2)若自然数st都是“运算数”,其中s=8910+11x(2≤x≤8,且x为整数);t的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且Ft)=4,规定:k,求所有k的值.5、已知a2=16,b3=27,求ab的值.6、(1)计算(2)计算(3)解方程(4)解方程组7、解方程,求x的值.(1)                     (2)8、求下列各式中x的值.(1)x-3)3=4(2)9(x+2)2=169、已知的平方根是的立方根是2,的整数部分,求的算术平方根.10、已知:,求x+17的算术平方根. -参考答案-一、单选题1、C【分析】将根号部分平方后得44即可看出,由此可判断其在6到7之间,再利用不等式的性质进行求解判断即可.【详解】故选:C.【点睛】本题考查二次根式的估值,关键在于利用平方法找到其大概的取值范围.2、A【分析】根据算术平方根的定义即可完成.【详解】 的算术平方根是 故选:A【点睛】本题考查了算术平方根的计算,掌握算术平方根的定义是关键.3、C【分析】利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.【详解】有理数有:,一共四个.无理数有:,1.12112111211112…(每两 个2之间依次多一个1),一共四个.故选:C.【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.4、B【分析】根据算术平方根和立方根的计算法则进行求解即可.【详解】解:故选B.【点睛】本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.5、D【分析】根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可.【详解】解:A、是无限不循环小数,不是分数,故此选项不符合题意;B、0.1919919991…(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;C、﹣3x2y+4x﹣1是三次三项式,常数项是-1,故此选项不符合题意;D、单项式﹣的次数是2,系数为﹣,故此选项符合题意;故选D.【点睛】本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.6、B【分析】是一个无限不循环小数,约等于3.142,3.142>3.14,即>3.14;=1÷4=0.25,把0.25的小数点向右移动两位添上百分号就是25%;即25%==3÷8=0.375,0.375<0.625,即<0.625;把13.2%小数点向左移动两位去掉百分号就是0.132,0.132<1.32,即13.2%<1.32.【详解】解:A≈3.142,3.142>3.14,即>3.14;B=1÷4=0.25=25%=C=3÷8=0.375,0.375<0.625,即<0.625;D 、13.2%=0.132,0.132<1.32,即13.2%<1.32.故选:B.【点睛】此题主要是考查小数、分数、百分数的互化及圆周率的限值.小数、分数、百分数、无限小数(循环小数)的大小比较,通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较,这样可以省去通分的麻烦.7、B【分析】根据实数的大小比较法则即可得.【详解】解:故选:B.【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.8、A【分析】定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽aa;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.【详解】解:且当时,▽a=a▽(-3)=-3,4+▽(2-5)=4-3=1>-2,a>-2时,▽a=-a▽[4+▽(2-5)]=▽1=-1,故选:A.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.9、C【分析】根据倒数的概念即可判断A选项,根据分数的概念即可判断B选项,根据无理数的估算方法即可判断C选项,根据算术平方根的概念即可判断D选项.【详解】解:A、0不能作分母,所以0没有倒数,故本选项错误;B、属于无理数,故本选项错误;C、因为 9<15<16,所以 3<<4,故本选项正确;D、的值是3,故本选项错误.故选:C.【点睛】此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.10、B【分析】根据立方根的定义进行计算即可.【详解】解:∵43=64,∴实数64的立方根是故选:B.【点睛】本题考查立方根,理解立方根的定义是正确解答的关键.二、填空题1、1【分析】由数轴可知,则有,然后问题可求解.【详解】解:由数轴可知:故答案为1.【点睛】本题主要考查数轴、算术平方根及整式的加减运算,熟练掌握数轴、算术平方根及整式的加减运算是解题的关键.2、-3【分析】根据立方根的定义解答即可.【详解】解:∵(-3)3=-27,∴立方等于-27的数是-3.故答案为-3.【点睛】本题考查了有理数的乘方,熟悉乘方和立方根的定义是解题的关键.3、-3【分析】根据立方根、算术平方根可直接进行求解.【详解】解:原式=故答案为-3.【点睛】本题主要考查立方根、算术平方根,熟练掌握求一个数的立方根及算术平方根是解题的关键.4、【分析】本题可利用立方根的定义直接求解.【详解】故填:【点睛】本题考查立方根的定义:如果一个数的立方等于a,则这个数称为a的立方根使用时和平方根定义对比记忆.5、    ﹣4    【分析】根据立方根、算术平方根的概念求解.【详解】解:=5,5的算术平方根是的算术平方根是﹣64的立方根是﹣4.故答案为:,﹣4.【点睛】本题考查了立方根、算术平方根的知识,掌握各知识点的概念是解答本题的关键.三、解答题1、【分析】根据立方根、算术平方根解决此题.【详解】解:由题意得:2a+4=8,3a+b-1=16.a=2,b=11.∴4a+b=8+11=19.∴4a+b的算术平方根为【点睛】本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键.2、(1);(2)【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.【详解】(1)原式(2)原式【点睛】此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.3、(1);(2)b2+3a﹣8的立方根是5【分析】(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;(2)将(1)中所求ab的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.【详解】解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x∴2x﹣2+6﹣3x=0,x=4,∴2x﹣2=6,a=36,a﹣4b的算术平方根是4,a﹣4b=16,∴36-4b=16b=5;(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,b2+3a﹣8的立方根是5.【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.4、(1)9981是“运算数”,2314不是“运算数”;(2)738.5【分析】(1)根据“运算数”的定义计算即可;(2)根据找出,设,其中,且为整数,由,找出的值,代入中即可得解.【详解】(1),9是整数,∴9981是“运算数”,不是整数,∴2314不是“运算数”;(2)为整数,可为:8932,8943,8954,8965,8976,8987,8998,是“运算数”,的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,设百位上的数字为,个位数上的数字为,则千位上的数字为,十位上的数字为,其中为整数,,即时,,其他情况不满足题意,【点睛】本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.5、64或﹣64【分析】根据平方根、立方根、有理数的乘方解决此题.【详解】解:∵a2=16,b3=27,a=±4,b=3.a=4,b=3时,ab=43=64.a=﹣4,b=3时,ab=(﹣4)3=﹣64.综上:ab=64或﹣64.【点睛】本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.6、(1);(2);(3);(4)【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即可得.【详解】解:(1)原式(2)原式(3)(4)由②①得:解得代入①得:解得故方程组的解为【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.7、(1) ;(2)x=−【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x−1可做一个整体求出其立方根,进而求出x的值.【详解】解:(1)(2)8(x−1)3=−27,x−1)3=−x−1=−x=−【点睛】本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.8、(1)x=5;(2)x=-x=【分析】(1)把x-3可做一个整体求出其立方根,进而求出x的值;(2)把x+2可做一个整体求出其平方根,进而求出x的值.【详解】解:(1) (x−3)3=4,x-3)3=8,x-3=2,x=5;(2)9(x+2)2=16,x+2)2=x+2=x=-x=【点睛】本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.9、【分析】直接利用平方根以及立方根和估算无理数的大小得出abc的值进而得出答案.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得:a=5,∵3a+b-9的立方根是2,∴15+b-9=8,解得:b=2,∵4<<5,c的整数部分,c=4,a+2b+c=5+4+4=13,a+2b+c的算术平方根为【点睛】此题主要考查了平方根以及立方根和估算无理数的大小,正确得出abc的值是解题关键.10、3【分析】首先根据,求出x的值,然后代入x+17求解算术平方根即可.【详解】解:∵∴5x+32=-8,解得:x=-8,x+17=-8+17=9,∵9的算术平方根为3,x+17的算术平方根为 3,故答案为:3.【点睛】此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共22页。试卷主要包含了下列运算正确的是,规定一种新运算,对于两个有理数,a为有理数,定义运算符号▽,下列各组数中相等的是等内容,欢迎下载使用。

    初中数学第十二章 实数综合与测试当堂达标检测题:

    这是一份初中数学第十二章 实数综合与测试当堂达标检测题,共20页。试卷主要包含了4的平方根是,下列说法正确的是等内容,欢迎下载使用。

    2020-2021学年第十二章 实数综合与测试课后测评:

    这是一份2020-2021学年第十二章 实数综合与测试课后测评,共1页。试卷主要包含了下列说法,64的立方根为.,下列说法正确的是,在下列各数,的算术平方根是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map