![2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数达标测试试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12706192/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数达标测试试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12706192/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数达标测试试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12706192/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第十二章 实数综合与测试巩固练习
展开
这是一份2020-2021学年第十二章 实数综合与测试巩固练习,共1页。试卷主要包含了下列说法正确的是,下列等式正确的是.,在实数中,无理数的个数是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、实数﹣2的倒数是( )A.2 B.﹣2 C. D.﹣2、规定一种新运算:,如.则的值是( ).A. B. C.6 D.83、估算的值是在( )之间A.5和6 B.6和7 C.7和8 D.8和94、下列说法正确的是( )A.的相反数是 B.2是4的平方根C.是无理数 D.5、实数2,0,﹣3,﹣中,最小的数是( )A.﹣3 B.﹣ C.2 D.06、下列等式正确的是( ).A. B. C. D.7、在下列四个选项中,数值最接近的是( )A.2 B.3 C.4 D.58、在实数中,无理数的个数是( )A.1 B.2 C.3 D.49、若一个数的算术平方根与它的立方根的值相同,则这个数是( )A.1 B.0和1 C.0 D.非负数10、的算术平方根是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正数的两个平方根分别是,则这个正数是_____.2、若一个正数的两个平方根分别为,则_____ ,这个正数是_________.3、用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2a,则3*(-2)=_____________.4、的平方根是__.5、下列各数:-1、、、,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是______.三、解答题(10小题,每小题5分,共计50分)1、已知a,b互为相反数,c,d互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.2、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.(1)用xcm表示图中空白部分的面积;(2)当x=5cm时空白部分面积为多少?(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?3、计算:.4、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记.例如:,∴,则(1)判断7643和4631是否为“多多数”?请说明理由;(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”.5、计算:6、计算:.7、已知:,求x+17的算术平方根.8、(1)计算:﹣32﹣(2021)0+|﹣2|﹣()﹣2×(﹣);(2)解方程:=﹣1.9、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为.参考小燕同学的做法,解答下列问题:(1)写出的小数部分为________;(2)已知与的小数部分分别为a和b,求a2+2ab+b2的值;(3)如果,其中x是整数,0<y<1,那么=________(4)设无理数(m为正整数)的整数部分为n,那么的小数部分为________(用含m,n的式子表示).10、计算:(1)18+(﹣17)+7+(﹣8);(2)×(﹣12);(3)﹣22+|﹣1|+. -参考答案-一、单选题1、D【分析】根据倒数的定义即可求解.【详解】解:-2的倒数是﹣.故选:D【点睛】本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.2、C【分析】根据新定义计算法则把转化为常规下运算得出,然后按有理数运算法则计算即可.【详解】解:∵,∴.故选择C.【点睛】本题考查新定义运算,掌握新定义运算的要点,含乘方的有理数混合运算是解题关键.3、C【分析】根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故.【详解】∵∴∴故选:C.【点睛】本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.4、B【分析】根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.【详解】解:A. 负数没有平方根,故无意义,A错误;B.,故2是4的平方根,B正确;C.是有理数,故C错误;D. ,故D错误; 故选B.【点睛】本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.5、A【分析】根据实数的性质即可判断大小.【详解】解:∵﹣3<﹣<0<2故选A.【点睛】此题主要考查实数的大小比较,解题的关键是熟知实数的性质.6、由不等式的性质可知:5-2<−2<6-2,即3<−2<故选:C.【点睛】本题主要考查的是估算无理数的大小,明确被开方数越大对应的算术平方根也越大是解题的关键.4.C【分析】分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.【详解】解:A、,故此选项错误;B、,故此选项错误;C、由B得此选项正确;D、,故此选项错误.故选:C.【点睛】此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.7、A【分析】根据无理数的估算先判断,进而根据,,进而可以判断,即可求得答案【详解】解:,,,,即更接近2故选A【点睛】本题考查了无理数的估算,掌握无理数的估算是解题的关键.8、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:=2,=2,,∴无理数只有,共2个.故选:B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B.【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.10、A【分析】根据算术平方根的定义即可完成.【详解】∵ ∴的算术平方根是 即 故选:A【点睛】本题考查了算术平方根的计算,掌握算术平方根的定义是关键.二、填空题1、49【分析】根据一个正数有两个平方根,这两个平方根互为相反数,可得2a-1+5-3a=0,据此求出a的值是多少,进而求出这个正数是多少即可.【详解】解:根据题意,得:2a-1+5-3a=0,解得a=4,∴2a-1=2×4-1=7,则这个正数为72=49,故答案为:49.【点睛】本题考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.2、 【分析】根据平方根的性质,可得 ,从而得到 ,即可求解.【详解】解:∵一个正数的两个平方根分别为,∴ ,解得: ,∴这个正数为 .故答案为: ;【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数是解题的关键.3、18【分析】根据a*b=ab2+2a,可得:3*(−2)=3×(−2)2+2×3,据此求出算式的值是多少即可.【详解】解:∵a*b=ab2+2a,∴3*(−2),=3×(−2)2+2×3,=3×4+6,=12+6,=18.故答案为:18.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.4、【分析】根据平方的运算,可得,即可求解【详解】解:∵,的平方根是,故答案为:【点睛】本题主要考查了平方和平方根的性质,熟练掌握一个正数有两个平方根,且互为相反数是解题的关键.5、3【分析】无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定.【详解】在-1、、、,0.1010010001…(相邻两个1之间0的个数增加1)中,无理数有,,0.1010010001…(相邻两个1之间0的个数增加1)共3个.故答案为:3.【点睛】本题考查了实数的分类,理解有理数与无理数的概念是解题的关键.三、解答题1、-1【分析】由题意可知,,,,将值代入即可.【详解】解:由题意得:,;解得∴.【点睛】本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.2、(1);(2);(3)13cm【分析】(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;(2)将x=5代入计算可得;(3)根据题意列出方程求解即可.【详解】解:(1)空白部分面积为;(2)当x=5时,空白部分面积为.(3)根据题意得,,解得x=13或-13(舍去),所以,大正方形的边长为13cm【点睛】此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.3、2﹣π.【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.【详解】解:=3﹣(π﹣)+(﹣1)﹣=3﹣π+﹣1﹣=2﹣π.【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.4、(1)7643是“多多数”, 4631不是“多多数”,(2)5421或6734【分析】(1)根据新定义,即可判断;(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出A、F(A),根据为一个能被13整除的“多多数”,且,,列出关系式,进而求解.(1)在7643中,7-4=3,6-3=3,∴7643是“多多数”,在4631中,3-3=1,6-1=5,∴4631不是“多多数”,(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,∴A表示的数为∴∴∵∴∴∵个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,∴,解得∴x、y的范围为,且x、y为整数∵若为一个能被13整除的“多多数”,∴ 当时,,,y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是同理,当时,,,没有符合条件的y;当时,,,没有符合条件的y;当时,,,符合条件的;当时,,,没有符合条件的y;当时,,,没有符合条件的y;综上符合条件的是、当时A为5421,当时A为6734综上足条件的“多多数”为5421或6734.【点睛】本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.5、-10【分析】根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算.【详解】解:, , .【点睛】本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值.6、1【分析】直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、有理数的乘方运算法则分别化简,再利用有理数的加减运算法则计算得出答案.【详解】解:=1+3﹣2﹣1=1.【点睛】本题主要考查了实数的混合运算,熟练掌握相关运算法则是解答本题的关键.7、3【分析】首先根据,求出x的值,然后代入x+17求解算术平方根即可.【详解】解:∵,∴5x+32=-8,解得:x=-8,∴x+17=-8+17=9,∵9的算术平方根为3,∴x+17的算术平方根为 3,故答案为:3.【点睛】此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.8、(1)-7;(2)x=9.【分析】(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)直接去分母,移项合并同类项解方程即可.【详解】解:(1)原式=﹣9﹣1+2﹣9×(﹣)=﹣9﹣1+2+1=﹣7;(2)去分母得:2x﹣3(1+x)=﹣12,去括号得:2x﹣3﹣3x=﹣12,移项得:2x﹣3x=﹣12+3,合并同类项得:﹣x=﹣9,系数化1得:x=9.【点睛】此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.9、(1);(2)1;(3);(4)【分析】(1)由题意易得,则有的整数部分为3,然后问题可求解;(2)由题意易得,则有,,然后可得,然后根据完全平方公式可进行求解;(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;(4)根据题意可直接进行求解.【详解】解:(1)∵,∴的整数部分为3,∴的小数部分为;故答案为;(2)∵,∴,,∵与的小数部分分别为a和b,∴,∴;(3)由可知,∵,∴的小数部分为,∵x是整数,0<y<1,∴,∴;故答案为;(4)∵无理数(m为正整数)的整数部分为n,∴的小数部分为,∴的小数部分即为的小数部分加1,为;故答案为.【点睛】本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.10、(1)0;(2)1;(3)【分析】(1)根据有理数的加法计算法则求解即可;(2)根据有理数的乘法分配律求解即可;(3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可.【详解】解:(1) ;(2);(3).【点睛】本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题,共18页。试卷主要包含了3的算术平方根是,估计的值应该在.等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习,共19页。试卷主要包含了如果a,若关于x的方程,的相反数是,可以表示等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共18页。试卷主要包含了9的平方根是,的值等于,在下列各数,3的算术平方根为等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)