![2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数同步练习试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12706196/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数同步练习试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12706196/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数同步练习试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12706196/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第十二章 实数综合与测试练习
展开
这是一份初中数学第十二章 实数综合与测试练习,共1页。试卷主要包含了64的立方根为.,16的平方根是,9的平方根是,下列计算正确的是.等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中错误的是( )A.9的算术平方根是3 B.的平方根是C.27的立方根为 D.平方根等于±1的数是12、下列运算正确的是( )A. B. C. D.3、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是( )A.6cm B.12cm C.18cm D.24cm4、64的立方根为( ).A.2 B.4 C.8 D.-25、下列各数中,3.1415,,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )A.0个 B.1个 C.2个 D.3个6、16的平方根是( )A.±8 B.8 C.4 D.±47、9的平方根是( )A.±3 B.-3 C.3 D.8、下列计算正确的是( ).A. B. C. D.9、实数2,0,﹣3,﹣中,最小的数是( )A.﹣3 B.﹣ C.2 D.010、在0.1010010001…(相邻两个1之间依次多一个0),,,中,无理数有( )A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:______.2、已知、两个实数在数轴上的对应点如上图所示:请你用“”或“”完成填空:(1)________;(2)________ ;(3)________;(4)________;(5)________;(6)________3、在﹣(﹣),﹣1,|3﹣π|,0这四个数中,最小的数是 _____.4、一个正方形的面积为5,则它的边长为_____.5、若a、b为实数,且满足|a-3|+=0,则a-b的值为_____三、解答题(10小题,每小题5分,共计50分)1、如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值.2、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.(1)用xcm表示图中空白部分的面积;(2)当x=5cm时空白部分面积为多少?(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?3、已知的平方根是,的立方根是2,是的整数部分,求的算术平方根.4、计算:(1).(2)+()2﹣5、已知x,y满足,求x、y的值.6、求下列各数的平方根:(1)121 (2) (3)(-13)2 (4) 7、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3﹣a3=(b﹣a)(b2+ab+a2).)(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.8、阅读下列材料:①…②…③…根据你观察到的规律,解决下列问题:(1)写出①组中的第5个等式;(2)写出②组的第n个等式,并证明;(3)计算:.9、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记.例如:,∴,则(1)判断7643和4631是否为“多多数”?请说明理由;(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”.10、计算: -参考答案-一、单选题1、C【分析】根据平方根,算术平方根,立方根的性质,即可求解.【详解】解:A、9的算术平方根是3,故本选项正确,不符合题意;B、因为 ,4的平方根是 ,故本选项正确,不符合题意;C、27的立方根为3,故本选项错误,符合题意;D、平方根等于±1的数是1,故本选项正确,不符合题意;故选:C【点睛】本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.2、B【分析】依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可.【详解】A、,故A错误;B、,故B正确;C.,故C错误;D.−|-2|=-2,故D错误.故选:B.【点睛】本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键.3、D【分析】由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.【详解】解:∵每个小立方体的体积为216cm3,∴小立方体的棱长,由三视图可知,最高处有四个小立方体,∴该几何体的最大高度是4×6=24cm,故选D.【点睛】本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.4、B【分析】根据立方根的定义进行计算即可.【详解】解:∵43=64,∴实数64的立方根是,故选:B.【点睛】本题考查立方根,理解立方根的定义是正确解答的关键.5、D【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.1415,0.321是有限小数,属于有理数;是分数,属于有理数;无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.故选:D.【点睛】此题考查了无理数.解题的关键是掌握实数的分类.6、D【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.7、A【分析】根据平方根的定义进行判断即可.【详解】解:∵(±3)2=9∴9的平方根是±3故选:A.【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.8、D【分析】由负数没有算术平方根可判断A,由算术平方根不可能是负数可判断B,C,由立方根的含义可判断D,从而可得答案.【详解】解:没有意义,故A不符合题意;,故B不符合题意;,故C不符合题意;,运算正确,故D符合题意;故选D【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.9、A【分析】根据实数的性质即可判断大小.【详解】解:∵﹣3<﹣<0<2故选A.【点睛】此题主要考查实数的大小比较,解题的关键是熟知实数的性质.10、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;是有理数;是有理数;是无理数;∴无理数有2个,故选B.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.二、填空题1、2【分析】直接根据零指数幂、负整数指数幂、乘方的运算法则计算即可.【详解】解:原式.故答案为:2.【点睛】本题考查了实数的加减运算,解题的关键是掌握运算法则,正确的进行计算.2、< > < > > < 【分析】根据数轴可知:b>0,a<0,根据绝对值的非负性得|a|>|b|,即可得.【详解】解: ∵由数轴可知:b>0,a<0,|a|>|b|,∴(1)a<b,(2)|a|>|b|,(3)a+b<0,(4)b−a>0,(5)a+b>a−b,(6),故答案为:(1)<;(2)>;(3)<;(4)>;(5)>;(6)<.【点睛】本题考查了数轴与实数,绝对值的非负性,解题的关键是掌握绝对值的非负性.3、-1【分析】先运用去括号、去绝对值的知识化简各数,然后根据实数的大小比较法则解答即可.【详解】解∵﹣(﹣)=,﹣1,|3﹣π|=π-3,0,∴−1<0<π-3<,∴这四个数中,最小的数是−1.故填:−1.【点睛】本题主要考查了实数的大小比较法则、去绝对值、去括号等知识点,正数都大于零,负数都小于零,正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.4、【分析】根据正方形面积根式求出边长,即可得出答案.【详解】解:边长为: 故答案为【点睛】本题考查了算术平方根,关键是会求一个数的算术平方根.5、2【分析】根据非负性的性质解答,当两个非负数相加,和为0时,必须满足其中的每一项都等于0.【详解】解:∵|a-3|+=0,∴a-3=0,b-1=0,∴a=3,b=1,∴a-b=3-1=2.故答案为2.【点睛】本题考查了非负数的性质,涉及绝对值的性质,算术平方根的性质,有理数的减法.掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.三、解答题1、(1)或;(2)9【分析】(1)由大正方形的边长为可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;(2)由(1)可得:再把a2+b2=57,ab=12,利用平方根的含义解方程即可.【详解】解:(1) 大正方形的边长为 大正方形由两个小正方形与两个长方形组成, (2)由(1)得: a2+b2=57,ab=12, 则 【点睛】本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.2、(1);(2);(3)13cm【分析】(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;(2)将x=5代入计算可得;(3)根据题意列出方程求解即可.【详解】解:(1)空白部分面积为;(2)当x=5时,空白部分面积为.(3)根据题意得,,解得x=13或-13(舍去),所以,大正方形的边长为13cm【点睛】此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.3、【分析】直接利用平方根以及立方根和估算无理数的大小得出a,b,c的值进而得出答案.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得:a=5,∵3a+b-9的立方根是2,∴15+b-9=8,解得:b=2,∵4<<5,c是的整数部分,∴c=4,∴a+2b+c=5+4+4=13,∴a+2b+c的算术平方根为【点睛】此题主要考查了平方根以及立方根和估算无理数的大小,正确得出a,b,c的值是解题关键.4、(1);(2)【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.【详解】(1)原式,;(2)原式,.【点睛】此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.5、x=5;y=2【分析】根据非负数的性质可得关于x、y的方程组,求解可得其值;【详解】解:由题意可得,联立得 ,解方程组得:,∴x、y的值分别为5、2.【点睛】此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.6、 (1)±11; (2) ; (3)±13; (4)±8【分析】(1)直接根据平方根的定义求解;(2)把带分数化成假分数,再根据平方根的定义求解;(3)(4)先化简,再根据平方根的定义求解.【详解】含有乘方运算先求出它的幂,再开平方.(1)因为(±11)2=121,所以121的平方根是±11;(2),因为, 所以的平方根是;(3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;(4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.【点睛】本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.7、(1)12不是复合数;证明见解析;(2)98和56.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.【详解】(1)12不是复合数,∵找不到两个整数a,b,使a3﹣b3=12,故12不是复合数,设“正点”P所表示的数为x(x为正整数),则a=x﹣1,b=x+1,∴(x+1)3﹣(x﹣1)3 =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除;(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,∴m2﹣n2=7,∵m,n都是正整数,∴,∴,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.【点睛】本题考查关于实数的新定义题型,理解新定义是解题的关键.8、(1);(2),证明见解析;(3)【分析】(1)根据前几个等式的变化规律即可求解;(2)根据前几个等式的变化规律即可得出第n个等式,根据异分母分式的减法法则证明即可;(3)根据前三组观察出的变化规律求解即可.(1)解:∵,∴第5个等式为;(2)解:∵,∴第n个等式为,证明:右边=,左边=,∵右边=左边,∴;(3)解:∵=,=,=,∴,∴=====.【点睛】本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键.9、(1)7643是“多多数”, 4631不是“多多数”,(2)5421或6734【分析】(1)根据新定义,即可判断;(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出A、F(A),根据为一个能被13整除的“多多数”,且,,列出关系式,进而求解.(1)在7643中,7-4=3,6-3=3,∴7643是“多多数”,在4631中,3-3=1,6-1=5,∴4631不是“多多数”,(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,∴A表示的数为∴∴∵∴∴∵个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,∴,解得∴x、y的范围为,且x、y为整数∵若为一个能被13整除的“多多数”,∴ 当时,,,y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是同理,当时,,,没有符合条件的y;当时,,,没有符合条件的y;当时,,,符合条件的;当时,,,没有符合条件的y;当时,,,没有符合条件的y;综上符合条件的是、当时A为5421,当时A为6734综上足条件的“多多数”为5421或6734.【点睛】本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.10、【分析】先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.【详解】解:原式=1-8+4+=.【点睛】本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.
相关试卷
这是一份数学七年级下册第十二章 实数综合与测试同步训练题,共19页。试卷主要包含了3的算术平方根是,下列说法正确的是,100的算术平方根是,规定一种新运算,9的平方根是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共21页。试卷主要包含了实数在哪两个连续整数之间,有一个数值转换器,原理如下,下列说法正确的是,﹣π,﹣3,,的大小顺序是,下列等式正确的是,若,则的值为等内容,欢迎下载使用。
这是一份2021学年第十二章 实数综合与测试课时训练,共19页。试卷主要包含了估计的值在,估算的值是在之间,3的算术平方根是,下列说法不正确的是,下列说法正确的是,4的平方根是等内容,欢迎下载使用。