![2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数专项测试试卷(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12706200/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数专项测试试卷(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12706200/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数专项测试试卷(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12706200/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题
展开
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共1页。试卷主要包含了若与互为相反数,则a,3的算术平方根为,在0.1010010001…,下列说法不正确的是,关于的叙述,错误的是,若,则整数a的值不可能为等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若,则的值为( )A. B. C. D.或2、对于两个有理数、,定义一种新的运算:,若,则的值为( )A. B. C. D.3、下列语句正确的是( )A.8的立方根是2 B.﹣3是27的立方根C.的立方根是± D.(﹣1)2的立方根是﹣14、若与互为相反数,则a、b的值为( )A. B. C. D.5、3的算术平方根为( )A. B.9 C.±9 D.±6、在0.1010010001…(相邻两个1之间依次多一个0),,,中,无理数有( )A.1个 B.2个 C.3个 D.4个7、下列说法不正确的是( )A.0的平方根是0 B.一个负数的立方根是一个负数C.﹣8的立方根是﹣2 D.8的算术平方根是28、关于的叙述,错误的是( )A.是无理数B.面积为8的正方形边长是C.的立方根是2D.在数轴上可以找到表示的点9、若,则整数a的值不可能为( )A.2 B.3 C.4 D.510、实数2,0,﹣3,﹣中,最小的数是( )A.﹣3 B.﹣ C.2 D.0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:__________.2、实数,在数轴上对应的点的位置如图所示,则|a-b|-|b+a|=______.3、的算术平方根是________,的平方根是__________,-8的立方根是_________,4、若实数a、b、c满足+(b﹣c+1)2=0,则2b﹣2c+a=________.5、的算术平方根是_____,的立方根是_____,的倒数是_____.三、解答题(10小题,每小题5分,共计50分)1、计算:2、计算:.3、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?4、计算:(π-4)0+|-6|-+5、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.(1)用xcm表示图中空白部分的面积;(2)当x=5cm时空白部分面积为多少?(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?6、(1)计算(2)计算(3)解方程(4)解方程组7、计算:.8、如图是一个无理数筛选器的工作流程图.(1)当x为16时,y值为______;(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.9、计算:.10、求下列各数的算术平方根:(1)0.64 (2) -参考答案-一、单选题1、C【分析】化简后利用平方根的定义求解即可.【详解】解:∵,∴x2-9=55,∴x2=64,∴x=±8,故选C.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.2、D【分析】根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.【详解】解: , , ,解得: 故选D【点睛】本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.3、A【分析】利用立方根的运算法则,进行判断分析即可.【详解】解:A、8的立方根是2,故A正确.B、3是27的立方根,故B错误.C、的立方根是,故C错误.D、(﹣1)2的立方根是1,故D错误.故选:A.【点睛】本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.4、D【分析】首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.【详解】解:∵与互为相反数,∴+=0,∴,得:,得:,解得:,将代入①得:,解得:.故选:D.【点睛】此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a、b的方程组并求解.5、A【分析】利用算术平方根的定义求解即可.【详解】3的算术平方根是.故选:A.【点睛】本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.6、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;是有理数;是有理数;是无理数;∴无理数有2个,故选B.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.7、D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案.【详解】解:A、0的平方根是0,原说法正确,故此选项不符合题意;B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D、8的算术平方根是2,原说法不正确,故此选项符合题意;故选:D.【点睛】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.8、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.【详解】解:A、是无理数,该说法正确,故本选项不符合题意;B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;C、8的立方根是2,该说法错误,故本选项符合题意;D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.9、D【分析】首先确定和的范围,然后求出整式a可能的值,判断求解即可.【详解】解:∵,即,,即,又∵,∴整数a可能的值为:2,3,4,∴整数a的值不可能为5,故选:D.【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.10、A【分析】根据实数的性质即可判断大小.【详解】解:∵﹣3<﹣<0<2故选A.【点睛】此题主要考查实数的大小比较,解题的关键是熟知实数的性质.二、填空题1、3【分析】根据实数的运算法则即可求出答案.【详解】解:原式.【点睛】本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.2、2b【分析】由题意根据绝对值的意义即非负数的绝对值是它本身,负数的绝对值是它的相反数.同时注意数轴上右边的数总大于左边的数进行分析计算即可解答.【详解】解:由数轴可得:a-b<0,b+a<0,∴|a-b|-|b+a|=b-a+b+a=2b.故答案为:2b.【点睛】本题主要考查实数与数轴之间的对应关系及绝对值的化简,注意掌握根据点在数轴上的位置来正确判断出代数式值的符号.3、5 ±3 -2 【分析】根据算术平方根、平方根、立方根的定义即可求解.【详解】解:=25∴算术平方根是5=9,∴的平方根是±3-8的立方根是-2故答案为:5;±3;-2.【点睛】此题主要考查算术平方根、平方根、立方根,解题的关键是熟知:算术平方根的定义:如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个数的立方等于a,那么这个数叫做a的立方根.4、1【分析】利用绝对值以及平方数的非负性,求出的值、和的关系式,利用整体代入直接求出代数式的值.【详解】解:+(b﹣c+1)2=0,,, 故,, . 故答案为:1.【点睛】本题主要是考查了绝对值以及平方数的非负性、整体代入法求解代数式的值,熟练利用非负性,求出对应字母的值,利用整体代入法,求解代数式的值,这是解决本题的关键.5、9【分析】根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可.【详解】解:=81的算术平方根是9,=的立方根是,的倒数是,故答案为:-9,,.【点睛】本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.三、解答题1、-10【分析】根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算.【详解】解:, , .【点睛】本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值.2、2【分析】先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.【详解】解:【点睛】本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.3、这个长方体的长、宽、高分别为、、【分析】根据题意设这个长方体的长、宽、高分别为4x、2x、x,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可.【详解】解:设这个长方体的长、宽、高分别为4x、2x、x.根据题意得:4x•2x=24,解得:x=或x=﹣(舍去).则4x=4,2x=2.所以这个长方体的长、宽、高分别为4cm、2cm、cm.【点睛】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.4、9【分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.5、(1);(2);(3)13cm【分析】(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;(2)将x=5代入计算可得;(3)根据题意列出方程求解即可.【详解】解:(1)空白部分面积为;(2)当x=5时,空白部分面积为.(3)根据题意得,,解得x=13或-13(舍去),所以,大正方形的边长为13cm【点睛】此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.6、(1);(2);(3)或;(4).【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即可得.【详解】解:(1)原式;(2)原式;(3),,,或;(4),由②①得:,解得,将代入①得:,解得,故方程组的解为.【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.7、2﹣π.【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.【详解】解:=3﹣(π﹣)+(﹣1)﹣=3﹣π+﹣1﹣=2﹣π.【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.8、(1)(2)0,1(3)x<0(4)x=3或x=9或x=81.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.(1)解:当x=16时,,则y=;故答案是:.(2)解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x<0时,导致开平方运算无法进行;(4)解: x的值不唯一.x=3或x=9或x=81.【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.9、【分析】根据求一个数的算术平方根,负整数指数幂,0次幂进行计算即可【详解】原式= =.【点睛】本题考查了求一个数的算术平方根,负整数指数幂,0次幂,正确的计算是解题的关键.10、 (1) 0.8; (2) 【分析】根据算术平方根的定义求解即可.【详解】解:(1)因为0.82=0.64,所以0.64的算术平方根是0.8,即=0.8.(2)因为,所以的算术平方根是,即.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题,共22页。试卷主要包含了若,则整数a的值不可能为,下列各组数中相等的是,已知a=,b=-|-|,c=,的算术平方根是,下列说法正确的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共20页。试卷主要包含了若,则的值为,16的平方根是,下列说法正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第十二章 实数综合与测试课时作业,共21页。试卷主要包含了观察下列算式,三个实数,2,之间的大小关系,的相反数是,对于两个有理数,下列运算正确的是等内容,欢迎下载使用。