![2022年沪教版(上海)七年级数学第二学期第十二章实数同步训练试题第1页](http://img-preview.51jiaoxi.com/2/3/12706204/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪教版(上海)七年级数学第二学期第十二章实数同步训练试题第2页](http://img-preview.51jiaoxi.com/2/3/12706204/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪教版(上海)七年级数学第二学期第十二章实数同步训练试题第3页](http://img-preview.51jiaoxi.com/2/3/12706204/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第十二章 实数综合与测试一课一练
展开
这是一份初中数学第十二章 实数综合与测试一课一练,共1页。试卷主要包含了下列等式正确的是,下列判断,下列各数中,比小的数是,如果a,下列说法不正确的是,若,则整数a的值不可能为等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个数的算术平方根与它的立方根的值相同,则这个数是( )A.1 B.0和1 C.0 D.非负数2、的值等于( )A. B.-2 C. D.23、估计的值应该在( ).A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间4、下列等式正确的是( )A. B. C. D.5、下列判断:①10的平方根是±;②与互为相反数;③0.1的算术平方根是0.01;④()3=a;⑤=±a2.其中正确的有( )A.1个 B.2个 C.3个 D.4个6、下列各数中,比小的数是( )A. B.- C. D.7、如果a、b分别是的整数部分和小数部分,那么的值是( )A.8 B. C.4 D.8、下列说法不正确的是( )A.0的平方根是0 B.一个负数的立方根是一个负数C.﹣8的立方根是﹣2 D.8的算术平方根是29、若,则整数a的值不可能为( )A.2 B.3 C.4 D.510、下列运算正确的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、近几年来魔术风靡我国,小亮发明了一个魔术盒,把一个实数对(,)放入其中,就得到一个数为2-3+1,如把(3,2)放入其中,就得到32-32+1=4,若把(-3,2)放入其中,得到数,再把(,4)放入其中,则得到的数是___________.2、如果一个正数的平方根为2a-1和4-a,这个正数为_______.3、实数16的平方根是___,=___,5的立方根记作___.4、已知ab,a,b为两个连续的自然数,则a+b=_____.5、若规定“※”的运算法则为:,例如:则 =_________.三、解答题(10小题,每小题5分,共计50分)1、已知.(1)求x与y的值;(2)求x+y的算术平方根.2、已知a,b互为相反数,c,d互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.3、已知x-2的平方根是±2,x+2y+7的立方根是3,求3x+y的算术平方根.4、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.(1)用xcm表示图中空白部分的面积;(2)当x=5cm时空白部分面积为多少?(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?5、(1)计算(2)计算(3)解方程(4)解方程组6、计算:7、(1)计算:;(2)求式中的x:(x+4)2=81.8、计算:(1);(2)﹣16÷(﹣2)2.9、计算:.10、计算(1)(2) -参考答案-一、单选题1、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B.【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.2、D【分析】由于表示4的算术平方根,由此即可得到结果.【详解】解:∵4的算术平方根为2,∴的值为2.故选D.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.3、C【分析】根据25<29<36估算出的大小,然后可求得的范围.【详解】解:∵25<29<36,∴<<,即5<<6.4、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).5、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错.【详解】解:①10的平方根是±,正确;②是相反数,正确;③0.1的算术平方根是,故错误;④()3=a,正确;⑤a2,故错误;正确的是①②④,有3个.故选:C.【点睛】本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.6、A【分析】直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.【详解】解:A. <-3,故A正确;B. ->-3,故B错误;C. >-3,故C错误;D. >-3,故D错误.故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.7、B【分析】先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可【详解】则a、b分别是的整数部分和小数部分,则故选B【点睛】本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键.8、D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案.【详解】解:A、0的平方根是0,原说法正确,故此选项不符合题意;B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D、8的算术平方根是2,原说法不正确,故此选项符合题意;故选:D.【点睛】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.9、D【分析】首先确定和的范围,然后求出整式a可能的值,判断求解即可.【详解】解:∵,即,,即,又∵,∴整数a可能的值为:2,3,4,∴整数a的值不可能为5,故选:D.【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.10、B【分析】依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可.【详解】A、,故A错误;B、,故B正确;C.,故C错误;D.−|-2|=-2,故D错误.故选:B.【点睛】本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键.二、填空题1、5【分析】由魔术盒的性质可知m=(-3)2-32+1=4,故(4,4)在魔术盒中的数字为(4)2-34+1=5.【详解】将(-3,2)代入2-3+1有(-3)2-32+1=4故m=4再将(4,4)代入2-3+1有(4)2-34+1=5.故答案为:5.【点睛】本题考查了新定义下的实数运算,按照定义的运算公式代入计算即可.2、49【分析】根据平方根的定义得到与互为相反数,列出关于的方程,求出方程的解得到的值,即可确定出这个正数.【详解】根据题意得:,解得:,∴,,则这个正数为49故答案为:49.【点睛】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.3、 【分析】分别根据平方根、算术平方根、立方根的定义依次可求解.【详解】解:实数16的平方根是,=,5的立方根记作.故答案为:,,.【点睛】本题主要考查了立方根、平方根、算术平方根的定义.用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.4、9【分析】利用已知得出a,b的值,进而求出a+b的平方根.【详解】解:∵a、b是两个连续的自然数, ,∴a=4,b=5,则 ,故的值为9.故答案为:9.【点睛】此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.5、-2【分析】依据定义的运算法则列式计算即可.【详解】==-2故答案为:-2.【点睛】本题考查了新定义下的实数运算,理解新定义的运算法则并列式是解题的关键.三、解答题1、(1),;(2)2【分析】(1)根据绝对值和平方根的非负性求出x与y的值;(2)先计算的值,即可得出的算术平方根.【详解】(1)由题可得:,解得:,∴,;(2),∵4的算术平方根为2,∴的算术平方根为2.【点睛】本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键.2、-1【分析】由题意可知,,,,将值代入即可.【详解】解:由题意得:,;解得∴.【点睛】本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.3、5【分析】根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案.【详解】解:∵x-2的平方根是±2,∴x-2=4,解得:x=6,∵x+2y+7的立方根是3,∴6+2×y+7=27,解得:y=7,∴3x+y=25,∴3x+y的算术平方根是5.【点睛】本题主要考查平方根以及立方根的性质、算术平方根,正确得出x,y的值是解题的关键.4、(1);(2);(3)13cm【分析】(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;(2)将x=5代入计算可得;(3)根据题意列出方程求解即可.【详解】解:(1)空白部分面积为;(2)当x=5时,空白部分面积为.(3)根据题意得,,解得x=13或-13(舍去),所以,大正方形的边长为13cm【点睛】此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.5、(1);(2);(3)或;(4).【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即可得.【详解】解:(1)原式;(2)原式;(3),,,或;(4),由②①得:,解得,将代入①得:,解得,故方程组的解为.【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.6、【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.7、(1);(2)或【分析】(1)分别计算算术平方根、立方根、绝对值,再进行加减即可;(2)根据平方根的意义,计算出x的值.【详解】解:(1)原式;(2)由平方根的意义得:或∴或.【点睛】本题考查了平方根意义和实数的运算.题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键.8、(1)(2)【分析】(1)根据有理数的混合运算进行计算即可;(2)先根据求一个数的立方根求得为,进而根据有理数的混合运算进行计算即可【详解】(1)原式(2)原式【点睛】本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.9、2﹣π.【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.【详解】解:=3﹣(π﹣)+(﹣1)﹣=3﹣π+﹣1﹣=2﹣π.【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.10、(1)-2(2)1【分析】(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;(1)解:;(2)解:.【点睛】本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共20页。试卷主要包含了实数在哪两个连续整数之间,下列说法,﹣π,﹣3,,的大小顺序是,下列说法正确的是,的算术平方根是等内容,欢迎下载使用。
这是一份七年级下册第十二章 实数综合与测试课时训练,共20页。试卷主要包含了下列整数中,与-1最接近的是,在0.1010010001…,实数在哪两个连续整数之间,化简计算﹣的结果是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共24页。试卷主要包含了4的平方根是,对于两个有理数,3的算术平方根为,下列各式中正确的是等内容,欢迎下载使用。