数学七年级下册第十二章 实数综合与测试同步训练题
展开
这是一份数学七年级下册第十二章 实数综合与测试同步训练题,共1页。试卷主要包含了若与互为相反数,则a,的相反数是,下列计算正确的是.,在下列各数,已知a=,b=-|-|,c=等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各数中,3.1415,,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )A.0个 B.1个 C.2个 D.3个2、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).A.2个 B.3个 C.4个 D.5个3、下列等式正确的是( )A. B. C. D.4、若与互为相反数,则a、b的值为( )A. B. C. D.5、的相反数是( )A.﹣ B. C. D.36、下列各数,,,,其中无理数的个数有( )A.4个 B.3个 C.2个 D.1个7、下列计算正确的是( ).A. B. C. D.8、在下列各数:、0.2、﹣π、、、0.101001中有理数的个数是( )A.1 B.2 C.3 D.49、已知a=,b=-|-|,c=(-2)3,则a,b,c的大小关系是( )A.b<a<c B.b<c<a C.c<b<a D.a<c<b10、16的平方根是( )A.±8 B.8 C.4 D.±4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知在两个连续的整数和之间,则的平方根为______.2、计算: = ______.3、的平方根是________.4、若是整数,则正整数的最小值是______.5、已知ab,a,b为两个连续的自然数,则a+b=_____.三、解答题(10小题,每小题5分,共计50分)1、直接写出结果:(1)____________;(2)____________;(3)的立方根=____________;(4)若x2=(﹣7)2,则x=____________.2、如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为.(1)图1中阴影正方形的边长为 ;点P表示的实数为 ;(2)如图2,在4×4方格中阴影正方形的边长为a.①写出边长a的值.②请仿照(1)中的作图在数轴上表示实数﹣a+1.3、已知a2=16,b3=27,求ab的值.4、阅读下列材料:∵,∴,∴的整数部分为3,小数部分为.请你观察上述的规律后试解下面的问题:如果的整数部分为,的小数部分为,求的值.5、计算:+++.6、计算:(1).(2)+()2﹣7、计算:.8、解方程:(1)4(x﹣1)2=36;(2)8x3=27.9、求下列各数的平方根:(1)121 (2) (3)(-13)2 (4) 10、阅读下面材料,并按要求完成相应问题:定义:如果一个数的平方等于-1,记为,这个数叫做虚数单位,把形如的数叫做复数,其中是这个复数的实部,是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.例如:应用:(1)计算(2)如果正整数a、b满足,求a、b的值.(3)将化为(均为实数)的形式,(即化为分母中不含的形式). -参考答案-一、单选题1、D【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.1415,0.321是有限小数,属于有理数;是分数,属于有理数;无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.故选:D.【点睛】此题考查了无理数.解题的关键是掌握实数的分类.2、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).4、D【分析】首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.【详解】解:∵与互为相反数,∴+=0,∴,得:,得:,解得:,将代入①得:,解得:.故选:D.【点睛】此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a、b的方程组并求解.5、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】解:的相反数是﹣,故选:A.【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.6、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:,是整数,属于有理数;是分数,属于有理数;无理数有,,共2个故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.7、D【分析】由负数没有算术平方根可判断A,由算术平方根不可能是负数可判断B,C,由立方根的含义可判断D,从而可得答案.【详解】解:没有意义,故A不符合题意;,故B不符合题意;,故C不符合题意;,运算正确,故D符合题意;故选D【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.8、D【分析】有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解.【详解】解:,,∴在、0.2、-π、、、0.101001中,有理数有0.2、、、0.101001,共有4个.故选:D.【点睛】本题考查有理数的意义,掌握有理数的意义是正确判断的前提.9、C【分析】本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较.【详解】解:由题意得:a===4,b==,c==-8,∴c<b<a.故选:C.【点睛】本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键.10、D【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.二、填空题1、【分析】先判断,得到和的值,然后进行相加,再求平方根即可.【详解】解:由题意,∵,∴,∴,,∴,∴的平方根为;故答案为:.【点睛】本题考查了估算无理数的大小,以及平方根的定义,正确得出是解题关键.2、##【分析】根据求一个数的立方根,化简绝对值,求一个数的算术平方根,进行实数的混合运算【详解】解:故答案为:【点睛】本题考查了一个数的立方根,化简绝对值,求一个数的算术平方根,掌握以上知识是解题的关键.3、±【分析】直接根据平方根的定义求解即可.【详解】解:的平方根为±=±.故答案为:±.【点睛】本题主要考查了平方根,知道一个正数有两个平方根是解决本题的关键.4、21【分析】由,要使是整数,则n必须是21的倍数,且这个倍数必须为整数的平方,由此可求得最小的整数n.【详解】∵∴84n必须为21的整数的平方倍数,即,其中m为正整数当m=1时,n最小,且最小值为21故答案为:21【点睛】本题考查了算术平方根,算术平方根的性质,对84分解质因数、掌握可开得尽方的数的特征是关键.5、9【分析】利用已知得出a,b的值,进而求出a+b的平方根.【详解】解:∵a、b是两个连续的自然数, ,∴a=4,b=5,则 ,故的值为9.故答案为:9.【点睛】此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.三、解答题1、(1)8;(2)0;(3)2;(4)【分析】(1)根据算术平方根的计算法则求解即可;(2)根据算术平方根的计算法则求解即可;(3)根据立方根的求解方法求解即可;(4)根据求平方根的方法解方程即可.【详解】解:(1),故答案为:8;(2),故答案为:0;(3)∵,∴的立方根是2,故答案为:2;(4)∵x2=(﹣7)2,∴x2=49,∴x=±7.故答案为:±7.【点睛】本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.2、(1),1+;(2)①;②见解析【分析】(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;(2)①先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;②由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为.【详解】解:(1)正方形ABCD的面积为:,正方形ABCD的边长为:,,,由题意得:点表示的实数为:,故答案为:,;(2)①阴影部分正方形面积为:,求其算术平方根可得:,②如图所示:点表示的数即为.【点睛】本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键.3、64或﹣64【分析】根据平方根、立方根、有理数的乘方解决此题.【详解】解:∵a2=16,b3=27,∴a=±4,b=3.当a=4,b=3时,ab=43=64.当a=﹣4,b=3时,ab=(﹣4)3=﹣64.综上:ab=64或﹣64.【点睛】本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.4、a+b的值为25+.【分析】由9π≈28.26,可得其整数部分a=28,由27<28<64,可求得的小数部分,继而可得a+b的值.【详解】解:∵9π≈28.26,∴a=28,∵27<28<64,∴,∴3<<4,∴b=-3,∴a+b=28+-3=25+,∴a+b的值为25+.【点睛】本题主要考查了估算无理数的大小,根据题意估算出a,b的值是解答此题的关键.5、.【分析】先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.【详解】解:原式.【点睛】本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.6、(1);(2)【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.【详解】(1)原式,;(2)原式,.【点睛】此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.7、【分析】根据求一个数的算术平方根,负整数指数幂,0次幂进行计算即可【详解】原式= =.【点睛】本题考查了求一个数的算术平方根,负整数指数幂,0次幂,正确的计算是解题的关键.8、(1)x=4或﹣2;(2)x=【分析】(1)先变形为(x﹣1)2=9,然后求9的平方根即可;(2)先变形为x3=,再利用立方根的定义得到答案.【详解】解:(1)方程两边除以4得,(x﹣1)2=9,∴x﹣1=±3,∴x=4或﹣2;(2)方程两边除以8得,x3=,所以x=.【点睛】本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.9、 (1)±11; (2) ; (3)±13; (4)±8【分析】(1)直接根据平方根的定义求解;(2)把带分数化成假分数,再根据平方根的定义求解;(3)(4)先化简,再根据平方根的定义求解.【详解】含有乘方运算先求出它的幂,再开平方.(1)因为(±11)2=121,所以121的平方根是±11;(2),因为, 所以的平方根是;(3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;(4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.【点睛】本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.10、(1);(2)或;(3).【分析】(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;(2)利用平方差公式计算得出答案;(3)分子分母同乘以(2-i)后,把分母化为不含i的数后计算.【详解】(1)∵∴原式(2)∵∴∵a、b是正整数∴或(3)【点睛】本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.
相关试卷
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共20页。试卷主要包含了4的平方根是,若 ,则,的值等于,下列各式正确的是.,0.64的平方根是,的算术平方根是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题,共20页。试卷主要包含了9的平方根是,计算2﹣1+30=,的算术平方根是,64的立方根为.等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共19页。试卷主要包含了下列说法,若,那么,观察下列算式等内容,欢迎下载使用。