年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数章节测试练习题

    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数章节测试练习题第1页
    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数章节测试练习题第2页
    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数章节测试练习题第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中沪教版 (五四制)第十二章 实数综合与测试测试题

    展开

    这是一份初中沪教版 (五四制)第十二章 实数综合与测试测试题,共1页。试卷主要包含了10的算术平方根是,下列说法中正确的有,下列说法不正确的是,下列各数中,最小的数是等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若一个数的算术平方根与它的立方根的值相同,则这个数是(   )A.1 B.0和1 C.0 D.非负数2、下列各数中,3.1415,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有(    A.0个 B.1个 C.2个 D.3个3、可以表示(    A.0.2的平方根 B.的算术平方根C.0.2的负的平方根 D.的立方根4、10的算术平方根是(    A.10 B. C. D.5、实数2,0,﹣3,﹣中,最小的数是(  )A.﹣3 B.﹣ C.2 D.06、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为(    A.4 B.6 C.12 D.367、下列说法中正确的有(  )①±2都是8的立方根 x的平方根是3   ④﹣=2.A.1个 B.2个 C.3个 D.4个8、下列说法不正确的是(    A.0的平方根是0 B.一个负数的立方根是一个负数C.﹣8的立方根是﹣2 D.8的算术平方根是29、下列各数中,最小的数是(    A.0 B. C. D.﹣310、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽aa;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为(  )A. B.7 C. D.1第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、观察下列关于正整数的等式:7*5*2=351410…①8*6*3=482418…②5*4*2=201008…③根据你发现的规律,请计算3*4*5=_____.2、若是整数,则正整数的最小值是______.3、的平方根是______,______.4、比较大小:_________5、比较大小:______3(填“>”、“<”或“=”).三、解答题(10小题,每小题5分,共计50分)1、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为参考小燕同学的做法,解答下列问题:(1)写出的小数部分为________;(2)已知的小数部分分别为ab,求a2+2abb2的值;(3)如果,其中x是整数,0<y<1,那么=________(4)设无理数m为正整数)的整数部分为n,那么的小数部分为________(用含mn的式子表示).2、计算:3、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.(1)用xcm表示图中空白部分的面积;(2)当x=5cm时空白部分面积为多少?(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?4、计算题(1)(2)(﹣1)20215、求下列各数的算术平方根:(1)0.64            (2)6、计算(1)(2)7、若互为相反数,且x≠0,y≠0,求的值.8、如图是一个无理数筛选器的工作流程图.(1)当x为16时,y值为______;(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.9、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,…,这样的分式是假分式;像,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:.解决下列问题:(1)写出一个假分式为:    (2)将分式化为整式与真分式的和的形式为:    ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值.10、对于一个三位自然数m,若m的百位数字等于两个一位正整数ab的和m的个位数字等于两个一位正整数ab的差,m的十位数字等于b,则称m是“和差数”,规定.例如:723是“和差数”,因为,所以723是“和差数”,即(1)填空:______.(2)请判断311是否是“和差数”?并说明理由;(3)若一个三位自然数xy是整数,即n的百位数字是9,十位数字是x,个位数字是y)为“和差数”,求所有满足条件的“和差数”n -参考答案-一、单选题1、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B.【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.2、D【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.1415,0.321是有限小数,属于有理数;是分数,属于有理数;无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.故选:D.【点睛】此题考查了无理数.解题的关键是掌握实数的分类.3、C【分析】根据平方根和算术平方根的定义解答即可.【详解】解:可以表示0.2的负的平方根,故选:C【点睛】此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.4、B【分析】直接利用算术平方根的求法即可求解.【详解】解:的算术平方根是故选:B.【点睛】本题主要考查了算术平方根,解题的关键是掌握求解的运算法则.5、A【分析】根据实数的性质即可判断大小.【详解】解:∵﹣3<﹣<0<2故选A.【点睛】此题主要考查实数的大小比较,解题的关键是熟知实数的性质.6、D【分析】根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.【详解】解:∵一个正数a的两个不同平方根是2x-2和6-3x∴2x-2+6-3x=0,解得:x=4,∴2x-2=2×4-2=8-2=6,∴正数a=62=36.故选择D.【点睛】本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.7、B【分析】根据平方根和立方根的定义进行判断即可.【详解】解:①2是8的立方根,-2不是8的立方根,原说法错误;=x,正确;,9的平方根是3,原说法错误;④﹣=2,正确;综上,正确的有②④共2个,故选:B.【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.8、D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案.【详解】解:A、0的平方根是0,原说法正确,故此选项不符合题意;B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D、8的算术平方根是2,原说法不正确,故此选项符合题意;故选:D.【点睛】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.9、C【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:所给的各数中,最小的数是故选:C.【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.10、A【分析】定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽aa;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.【详解】解:且当时,▽a=a▽(-3)=-3,4+▽(2-5)=4-3=1>-2,a>-2时,▽a=-a▽[4+▽(2-5)]=▽1=-1,故选:A.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.二、填空题1、121520【分析】观察规律可知,算出3*4*5即可.【详解】故答案为:121520.【点睛】本题考查数字类找规律问题,根据题目给出的信息找出规律是解题的关键.2、21【分析】,要使是整数,则n必须是21的倍数,且这个倍数必须为整数的平方,由此可求得最小的整数n【详解】∴84n必须为21的整数的平方倍数,即,其中m为正整数m=1时,n最小,且最小值为21故答案为:21【点睛】本题考查了算术平方根,算术平方根的性质,对84分解质因数、掌握可开得尽方的数的特征是关键.3、±2    -8    【分析】根据平方根的定义:如果对于一个数a和非负数b,有,那么a就叫做b的平方根;立方根的定义:对于cd两个数,如果,那么c就叫做d的立方根,进行求解即可.【详解】解:∵,4的平方根为±2,的平方根为±2,故答案为:±2;-8.【点睛】本题主要考查了算术平方根,平方根和立方根,熟知相关定义是解题的关键.4、<【分析】先把两个数同时平方后比较大小,因为都是正数,即平方后的数越大,其这个数越大,由此求解即可.【详解】解:∵故答案为:<.【点睛】本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法.5、<【分析】,再利用不等式的基本性质可得,从而可得答案.【详解】解:∵故答案为:<.【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.三、解答题1、(1);(2)1;(3);(4)【分析】(1)由题意易得,则有的整数部分为3,然后问题可求解;(2)由题意易得,则有,然后可得,然后根据完全平方公式可进行求解;(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;(4)根据题意可直接进行求解.【详解】解:(1)∵的整数部分为3,的小数部分为故答案为(2)∵的小数部分分别为ab(3)由可知的小数部分为x是整数,0<y<1,故答案为(4)∵无理数m为正整数)的整数部分为n的小数部分为的小数部分即为的小数部分加1,为故答案为【点睛】本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.2、1【分析】根据平方根与立方根可直接进行求解.【详解】解:原式【点睛】本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.3、(1);(2);(3)13cm【分析】(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;(2)将x=5代入计算可得;(3)根据题意列出方程求解即可.【详解】解:(1)空白部分面积为(2)当x=5时,空白部分面积为(3)根据题意得,解得x=13或-13(舍去),所以,大正方形的边长为13cm【点睛】此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.4、(1)2+2;(2)4【分析】(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;(2)原式利用乘方的意义,算术平方根定义计算即可得到结果.【详解】解:(1)原式=2﹣2+|﹣4|=2﹣2+4=2+2;(2)原式=﹣1+5=4.【点睛】本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.5、 (1) 0.8; (2) 【分析】根据算术平方根的定义求解即可.【详解】解:(1)因为0.82=0.64,所以0.64的算术平方根是0.8,即=0.8.(2)因为所以的算术平方根是,即【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.6、(1)-2(2)1【分析】(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;(1)解:(2)解:【点睛】本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.7、【分析】根据互为相反数的和为零,可得方程,再根据等式的性质变形.【详解】由题意可得:,即【点睛】本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.8、(1)(2)0,1(3)x<0(4)x=3或x=9或x=81.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.(1)解:当x=16时,,则y=故答案是:(2)解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x<0时,导致开平方运算无法进行;(4)解: x的值不唯一.x=3或x=9或x=81.【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.9、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案.(2)根据题意给出的变形方法即可求出答案.(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一). (2)故答案为:(3)∵x2=±1或x2=±2,x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.10、(1)412(2)是,理由见解析(3)941或933或925或917【分析】(1)根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,即可得解;(2)根据定义即可判断311是“和差数”;(3)由题意得到,解得,再结合ab为正整数且,即可得解.(1)解:根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,故412.故答案为:412;(2)解:311是“和差数”,是“和差数”;(3)解:∵是整数) 

    相关试卷

    数学沪教版 (五四制)第十二章 实数综合与测试课后测评:

    这是一份数学沪教版 (五四制)第十二章 实数综合与测试课后测评,共22页。试卷主要包含了若,则的值为,下列判断,在下列四个实数中,最大的数是,4的平方根是,下列各组数中相等的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后测评:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后测评,共21页。试卷主要包含了下列各式中正确的是,估算的值是在之间,4的平方根是,3的算术平方根是,观察下列算式,以下正方形的边长是无理数的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题:

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题,共22页。试卷主要包含了下列说法正确的是,下列说法,下列判断,下列说法中错误的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map