初中数学第十二章 实数综合与测试当堂达标检测题
展开
这是一份初中数学第十二章 实数综合与测试当堂达标检测题,共1页。试卷主要包含了以下正方形的边长是无理数的是,﹣π,﹣3,,的大小顺序是,的算术平方根是,下列计算正确的是.,下列各数中,比小的数是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若,则的值为( )A. B. C. D.或2、64的立方根为( ).A.2 B.4 C.8 D.-23、4的平方根是( )A.±2 B.﹣2 C.2 D.44、以下正方形的边长是无理数的是( )A.面积为9的正方形 B.面积为49的正方形C.面积为8的正方形 D.面积为25的正方形5、﹣π,﹣3,,的大小顺序是( )A. B.C. D.6、的算术平方根是( )A. B. C. D.7、下列计算正确的是( ).A. B. C. D.8、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).A.2个 B.3个 C.4个 D.5个9、下列各数中,比小的数是( )A. B.- C. D.10、下列说法正确的是( )A.=±2 B.27的立方根是±3 C.9的平方根是3 D.9的平方根是±3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知a,b 是有理数,且满足,那么a=________,b =________.2、的算术平方根是 _____;﹣64的立方根是 _____.3、化简=_______,=_______.4、计算______.5、如果一个数的平方等于16,那么这个数是________.三、解答题(10小题,每小题5分,共计50分)1、计算:(1).(2)+()2﹣2、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)3、计算:.4、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为.参考小燕同学的做法,解答下列问题:(1)写出的小数部分为________;(2)已知与的小数部分分别为a和b,求a2+2ab+b2的值;(3)如果,其中x是整数,0<y<1,那么=________(4)设无理数(m为正整数)的整数部分为n,那么的小数部分为________(用含m,n的式子表示).5、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b﹣9)2=0,c=1.(1)a= ,b= ;(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|x﹣a|﹣|x﹣b|取得最大值,最大值为 ;(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t≤8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?6、计算:(π-4)0+|-6|-+7、阅读下面的文字,解答问题.现规定:分别用和表示实数x的整数部分和小数部分,如实数3.14的整数部分是,小数部分是;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即就是的小数部分,所以.(1) , ; , .(2)如果,,求的立方根.8、直接写出结果:(1)____________;(2)____________;(3)的立方根=____________;(4)若x2=(﹣7)2,则x=____________.9、阅读下面材料,并按要求完成相应问题:定义:如果一个数的平方等于-1,记为,这个数叫做虚数单位,把形如的数叫做复数,其中是这个复数的实部,是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.例如:应用:(1)计算(2)如果正整数a、b满足,求a、b的值.(3)将化为(均为实数)的形式,(即化为分母中不含的形式).10、已知一个正数x的平方根是a+3和2a-15,求a和x的值 -参考答案-一、单选题1、C【分析】化简后利用平方根的定义求解即可.【详解】解:∵,∴x2-9=55,∴x2=64,∴x=±8,故选C.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.2、B【分析】根据立方根的定义进行计算即可.【详解】解:∵43=64,∴实数64的立方根是,故选:B.【点睛】本题考查立方根,理解立方根的定义是正确解答的关键.3、A【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根.【详解】解:∵∴4的平方根是,故选:A.【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.4、C【分析】理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.【详解】解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;C、面积为8的正方形的边长为,是无理数,故本选项符合题意;D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.故选:C.【点睛】本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.5、B【分析】根据实数的大小比较法则即可得.【详解】解:,,,则,故选:B.【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.6、A【分析】根据算术平方根的定义即可完成.【详解】∵ ∴的算术平方根是 即 故选:A【点睛】本题考查了算术平方根的计算,掌握算术平方根的定义是关键.7、D【分析】由负数没有算术平方根可判断A,由算术平方根不可能是负数可判断B,C,由立方根的含义可判断D,从而可得答案.【详解】解:没有意义,故A不符合题意;,故B不符合题意;,故C不符合题意;,运算正确,故D符合题意;故选D【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.8、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9、A【分析】直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.【详解】解:A. <-3,故A正确;B. ->-3,故B错误;C. >-3,故C错误;D. >-3,故D错误.故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.10、D【分析】根据平方根、立方根和算术平方根的性质计算即可;【详解】=2,故A错误;27的立方根是3,故B错误;9的平方根是±3,故C错误;9的平方根是±3,故D正确;故选D.【点睛】本题主要考查了平方根的性质,立方根的性质和算术平方根的性质,准确计算是解题的关键.二、填空题1、-2 -1 【分析】利用平方与算术平方根的非负性即可解决.【详解】∵,,且∴,∴,故答案为:-2,-1【点睛】本题考查了有理数的平方的非负性质及算术平方根的非负性质,即几个非负数的和为零,则这几个数都为零.掌握这个性质是本题的关键.2、 ﹣4 【分析】根据立方根、算术平方根的概念求解.【详解】解:=5,5的算术平方根是,∴的算术平方根是;﹣64的立方根是﹣4.故答案为:,﹣4.【点睛】本题考查了立方根、算术平方根的知识,掌握各知识点的概念是解答本题的关键.3、2 3 【分析】由题意直接根据立方根和算术平方根的性质进行化简即可得出答案.【详解】解:=2,=3.故答案为:2,3.【点睛】本题考查立方根和算术平方根的化简,熟练掌握立方根和算术平方根的性质是解题的关键.4、##【分析】根据立方根和算术平方根的求解方法求解即可.【详解】解:,故答案为:.【点睛】本题主要考查了算术平方根和立方根,熟知二者的定义是解题的关键.5、【分析】根据平方根的定义进行解答即可.【详解】解:∵∴如果一个数的平方等于16,那么这个数是故答案为:【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)三、解答题1、(1);(2)【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.【详解】(1)原式,;(2)原式,.【点睛】此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.2、第二种,理由见解析【分析】根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.【详解】解:第一种方法:1×10×365=3650元第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元∵10485.75>3650∴第二种方法得到的钱多.【点睛】本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.3、1【分析】直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、有理数的乘方运算法则分别化简,再利用有理数的加减运算法则计算得出答案.【详解】解:=1+3﹣2﹣1=1.【点睛】本题主要考查了实数的混合运算,熟练掌握相关运算法则是解答本题的关键.4、(1);(2)1;(3);(4)【分析】(1)由题意易得,则有的整数部分为3,然后问题可求解;(2)由题意易得,则有,,然后可得,然后根据完全平方公式可进行求解;(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;(4)根据题意可直接进行求解.【详解】解:(1)∵,∴的整数部分为3,∴的小数部分为;故答案为;(2)∵,∴,,∵与的小数部分分别为a和b,∴,∴;(3)由可知,∵,∴的小数部分为,∵x是整数,0<y<1,∴,∴;故答案为;(4)∵无理数(m为正整数)的整数部分为n,∴的小数部分为,∴的小数部分即为的小数部分加1,为;故答案为.【点睛】本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.5、(1)﹣3,9;(2)≥9,12;(3)秒或秒.【分析】(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;(2)由(1)得a=﹣3、b=9,则代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.【详解】解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,∴|a+3|=0,(b﹣9)2=0,∴a=﹣3,b=9,故答案为:﹣3,9.(2)∵a=﹣3,b=9,∴代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,当x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,∵﹣12≤2x﹣6<12,∴﹣12≤|x+3|﹣|x﹣9|<12;当x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,综上所述,|x+3|﹣|x﹣9|的最大值为12,故答案为:≥9,12.(3)∵点C表示的数是1,点B表示的数是9,∴B、C两点之间的距离是9﹣1=8,当点Q与点C重合时,则2t=8,解得t=4,当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t,根据题意得9﹣2t﹣(﹣3﹣t)=2×2t,解得t=;当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t,∵1+(2t﹣8)=2t﹣7,∴点Q表示的数是2t﹣7,根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),解得t=,综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍.【点睛】本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.6、9【分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.7、(1)1,,3,;(2)2【分析】(1)先估算出和的范围,再根据题目规定的表示方法写出答案即可;(2)先估算出,的范围,即可求出a,b的值,进一步即可求出结果.【详解】(1)∵1<<2,3<<4,∴[]=1,<>=−1,[]=3,<>=−3,故答案为:1,,3,;(2)∵2<<3,10<<11,∴<>=a=−2,[]=b=10,∴,∴的立方根是2.【点睛】本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.8、(1)8;(2)0;(3)2;(4)【分析】(1)根据算术平方根的计算法则求解即可;(2)根据算术平方根的计算法则求解即可;(3)根据立方根的求解方法求解即可;(4)根据求平方根的方法解方程即可.【详解】解:(1),故答案为:8;(2),故答案为:0;(3)∵,∴的立方根是2,故答案为:2;(4)∵x2=(﹣7)2,∴x2=49,∴x=±7.故答案为:±7.【点睛】本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.9、(1);(2)或;(3).【分析】(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;(2)利用平方差公式计算得出答案;(3)分子分母同乘以(2-i)后,把分母化为不含i的数后计算.【详解】(1)∵∴原式(2)∵∴∵a、b是正整数∴或(3)【点睛】本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.10、4,49【分析】根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.【详解】解:∵正数有2个平方根,它们互为相反数,∴,解得,所以.【点睛】本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共20页。试卷主要包含了三个实数,2,之间的大小关系,下列说法正确的是,的值等于等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共19页。试卷主要包含了下列等式正确的是,估算的值是在之间,下列说法中,正确的是,实数﹣2的倒数是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课堂检测,共20页。试卷主要包含了关于的叙述,错误的是,以下正方形的边长是无理数的是,下列各数中,最小的数是,实数﹣2的倒数是,9的平方根是,3的算术平方根为等内容,欢迎下载使用。