人教版八年级下册17.2 勾股定理的逆定理课文配套ppt课件
展开理解勾股定理逆定理的具体内容及原命题、逆命题、勾股数的概念.
能证明勾股定理的逆定理,能利用勾股定理的逆定理判断一个三角形是直角三角形.
问题:按照这种做法真能得到一个直角三角形吗?
用13个等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。
下面有三组数分别是一个三角形的三边长a, b, c: ①5,12,13; ②7,24,25; ③8,15,17.问题 分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
下面有三组数分别是一个三角形的三边长a, b, c: ①5,12,13; ②7,24,25; ③8,15,17.问题2 这三组数在数量关系上有什么相同点?
① 5,12,13满足52+122=132,② 7,24,25满足72+242=252,③ 8,15,17满足82+152=172.
问题3 古埃及人用来画直角的三边满足这个等式吗?
∵32+42=52,∴满足.
我觉得这个猜想不准确,因为测量结果可能有误差.
我也觉得猜想不严谨,前面我们只取了几组数据,不能由部分代表整体.
问题3 据此你有什么猜想呢?
由上面几个例子,我们猜想:命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2. 求证:△ABC是直角三角形.
构造两直角边分别为a,b的Rt△A′B′C′
证明:作Rt△A′B′C′,使∠C′=90°,A′C′=b,B′C′=a,
∴△ABC≌ △A′B′C′(SSS),
∴∠C= ∠C′=90° , 即△ABC是直角三角形.
如果三角形的三边长a 、b 、c满足 a2+b2=c2,那么这个三角形是直角三角形.
例1 下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?
(1) a=15 , b=8 ,c=17;
解:(1)∵152+82=289,172=289,∴152+82=172, 根据勾股定理的逆定理,这个三角形是直角三角形,且∠C是直角.
(2) a=13 ,b=14 ,c=15.
(2)∵132+142=365,152=225, ∴132+142≠152,不符合勾股定理的逆定理, ∴这个三角形不是直角三角形.
【变式题1】若△ABC的三边a,b,c满足 a:b: c=3:4:5,试判断△ABC的形状.
解:设a=3k,b=4k,c=5k(k>0),∵(3k)2+(4k)2=25k2,(5k)2=25k2,∴(3k)2+(4k)2=(5k)2,∴△ABC是直角三角形,且∠C是直角.
例2 如图,在正方形ABCD中,F是CD的中点,E为BC上一点,且CE= CB,试判断AF与EF的位置关系,并说明理由.
解:AF⊥EF.理由如下:设正方形的边长为4a, 则EC=a,BE=3a,CF=DF=2a.在Rt△ABE中,得AE2=AB2+BE2=16a2+9a2=25a2.在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为斜边.∴∠AFE=90°,即AF⊥EF.
命题1 如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.
命题2 如果三角形的三边长a 、b 、c满足a2+b2=c2,那么这个三角形是直角三角形.
前面我们学习了两个命题,分别为:
它们是题设和结论正好相反的两个命题.
问题1 两个命题的条件和结论分别是什么?
问题2 两个命题的条件和结论有何联系?
一般地,原命题成立时,它的逆命题既可能成立,也可能不成立.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们称这两个定理互为逆定理.勾股定理与勾股定理的逆定理为互逆定理.
如果三角形的三边长a,b,c满足a2+b2=c2, 那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.
3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;10,24,26等等.
一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.
练一练:下列各组数是勾股数的是 ( ) A.6,8,10 B.7,8,9 C.0.3,0.4,0.5 D.52,122,132
方法点拨:根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方是否等于其他两边的平方和即可.
1.下列各组数是勾股数的是 ( ) A.3,4,7 B.5,12,13 C.1.5,2,2.5 D.1,3,5
将直角三角形的三边长扩大同样的倍数,则得到的三角形 ( ) A.是直角三角形 B.可能是锐角三角形 C.可能是钝角三角形 D.不可能是直角三角形
3.在△ABC中,∠A, ∠B, ∠C的对边分别为a,b,c.①若∠C- ∠B= ∠A,则△ABC是直角三角形;②若c2=b2-a2,则△ABC是直角三角形,且∠C=90°;③若(c+a)(c-a)=b2,则△ABC是直角三角形;④若∠A:∠B:∠C=5:2:3,则△ABC是直角三角形.以上命题中的假命题有 ( )A.1个 B.2个 C.3个 D.4个
4.已知a、b、c是△ABC三边的长,且满足关系式 ,则△ABC的形状是 ________________.
5.(1)一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是_______cm;
(2)“等腰三角形两底角相等”的逆定理为__________________________________________.
有两个角相等的三角形是等腰三角形
6.已知△ABC,AB=n²-1,BC=2n,AC=n²+1(n为大于1的正整数).试问△ABC是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由.
解:∵AB²+BC²=(n²-1)²+(2n)² =n4 -2n²+1+4n² =n4 +2n²+1 =(n²+1)² =AC²,∴△ABC是直角三角形,边AC所对的角是直角.
7.如图,在四边形ABCD中,AB=8,BC=6,AC=10,AD=CD= ,求四边形ABCD 的面积.
1.勾股定理的逆定理是什么?
2.什么叫做互逆命题、原命题与逆命题、互逆定理?
4.勾股定理与勾股定理的逆定理的区别与联系是什么?
3.已学过的直角三角形的判定方法有哪些?
人教版八年级下册17.2 勾股定理的逆定理授课课件ppt: 这是一份人教版八年级下册17.2 勾股定理的逆定理授课课件ppt,文件包含SectionBpptx、SectionA-1ppt、SectionA-2pptx、SelfCheckppt、SectionA1bmp3、SectionA2amp3、SectionA2bmp3、SectionA2dmp3、SectionB1cmp3、SectionB1dmp3、SectionB2bmp3、wordsandexpressionsUnit2mp3等12份课件配套教学资源,其中PPT共143页, 欢迎下载使用。
数学八年级下册17.2 勾股定理的逆定理集体备课课件ppt: 这是一份数学八年级下册17.2 勾股定理的逆定理集体备课课件ppt
数学八年级下册第十七章 勾股定理17.2 勾股定理的逆定理教学课件ppt: 这是一份数学八年级下册第十七章 勾股定理17.2 勾股定理的逆定理教学课件ppt,共21页。PPT课件主要包含了学习目标,原命题,逆命题,逆定理,勾股定理的逆定理,互逆命题,互逆定理,课后作业等内容,欢迎下载使用。