初中数学北京课改版八年级下册第十五章 四边形综合与测试达标测试
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试达标测试,共30页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列几何图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )
A.①②③ B.②③④ C.①②④ D.①④
3、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )
A.cm B.2cm C.1cm D.2cm
4、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是( )
A.菱形 B.矩形 C.正方形 D.三角形
5、下列命题是真命题的是( )
A.五边形的内角和是720° B.三角形的任意两边之和大于第三边
C.内错角相等 D.对角线互相垂直的四边形是菱形
6、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )
A.5 B.4 C.3 D.2
7、如图,四边形ABCD是平行四边形,下列结论中错误的是( )
A.当▱ABCD是矩形时,∠ABC=90° B.当▱ABCD是菱形时,AC⊥BD
C.当▱ABCD是正方形时,AC=BD D.当▱ABCD是菱形时,AB=AC
8、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
9、已知,四边形ABCD的对角线AC和BD相交于点O.设有以下条件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是( )
A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④
10、下图是文易同学答的试卷,文易同学应得( )
A.40分 B.60分 C.80分 D.100分
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.
2、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内壁离底部0.1m的点处有一只蚊子,此时一只壁虎正好在容器的顶部点处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是______m.
3、如图,矩形ABCD中,AC、BD相交于点O且AC=12,如果∠AOD=60°,则DC=__.
4、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.
5、正方形ABCD的边长是8cm,点M在BC边上,且MC=2cm,P是正方形边上的一个动点,连接PB交AM于点N,当PB=AM时,PN的长是_____ .
三、解答题(5小题,每小题10分,共计50分)
1、如图,把矩形纸片放入直角坐标系中,使分别落在x轴,y轴的正半轴上,连接,且.
(1)求所在直线的解析式;
(2)将纸片折叠,使点A与点C重合(折痕为),求折叠后纸片重叠部分的面积;
(3)若过一定点M的任意一条直线总能把矩形的面积分为相等的两部分,则点M的坐标为________.
2、如图,四边形ABCD是平行四边形,,且分别交对角线于点E、F,连接ED、BF.
(1)求证:四边形BEDF是平行四边形;
(2)若AE=EF,请直接写出图2中面积等于四边形ABCD的面积的的所有三角形.
3、如图,□ABCD中,点E、F分别在AB、CD上,且BE=DF.求证:AF=EC.
4、如图,一次函数y=- x+3的图像分别与x轴、y轴交于点A,B,以线段AB为边在第一象限内作等腰直角三角形ABC,∠BAC=90°,
(1)求过B,C两点的直线的解析式.
(2)作正方形ABDC,求点D的坐标.
5、在平面直角坐标系中,过A(0,4)的直线a垂直于y轴,点M(9,4)为直线a上一点,若点P从点M出发,以每秒2cm的速度沿直线a向左移动,点Q从原点同时出发,以每秒1cm的速度沿x轴向右移动,
(1)几秒后PQ平行于y轴?
(2)在点P、Q运动的过程中,若线段OQ=2AP,求点P的坐标.
-参考答案-
一、单选题
1、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,是中心对称图形,选项说法错误,不符合题意;
B、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;
C、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;
D、是轴对称图形,是中心对称图形,选项说法正确,符合题意;
故选D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.解题的关键是掌握轴对称图形寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、C
【分析】
利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
【详解】
∵CM、BN分别是高
∴△CMB、△BNC均是直角三角形
∵点P是BC的中点
∴PM、PN分别是两个直角三角形斜边BC上的中线
∴
故①正确
∵∠BAC=60゜
∴∠ABN=∠ACM=90゜−∠BAC=30゜
∴AB=2AN,AC=2AM
∴AN:AB=AM:AC=1:2
即②正确
在Rt△ABN中,由勾股定理得:
故③错误
当∠ABC=60゜时,△ABC是等边三角形
∵CM⊥AB,BN⊥AC
∴M、N分别是AB、AC的中点
∴MN是△ABC的中位线
∴MN∥BC
故④正确
即正确的结论有①②④
故选:C
【点睛】
本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
3、B
【分析】
由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
【详解】
解:∵菱形ABCD的周长为8cm,
∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AC=AB=2cm,
∴OA=1(cm),
在Rt△AOB中,由勾股定理得:OB===(cm),
∴BD=2OB=2(cm),
故选:B.
【点睛】
此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
4、B
【分析】
先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.
【详解】
解:如图,∵、、、分别是、、、的中点,
∴,,,
∴四边形是平行四边形,
∵,
∴,
∴平行四边形是矩形,
又与不一定相等,
与不一定相等,
矩形不一定是正方形,
故选:B.
【点睛】
本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.
5、B
【分析】
利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.
【详解】
解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;
B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;
C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;
D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.
6、A
【分析】
利用直角三角形斜边的中线的性质可得答案.
【详解】
解:∵∠C=90°,若D为斜边AB上的中点,
∴CD=AB,
∵AB的长为10,
∴DC=5,
故选:A.
【点睛】
此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
7、D
【分析】
由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.
【详解】
解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;
当▱ABCD是菱形时,AC⊥BD,正确,故B不符合题意;
当▱ABCD是正方形时,AC=BD,正确,故C不符合题意;
当▱ABCD是菱形时,AB=BC,故D符合题意;
故选D
【点睛】
本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.
8、C
【分析】
根据SAS证△ABI≌△ADC即可得证①正确,过点B作BM⊥IA,交IA的延长线于点M,根据边的关系得出S△ABI=S1,即可得出②正确,过点C作CN⊥DA交DA的延长线于点N,证S1=S3即可得证③正确,利用勾股定理可得出S1+S2=S3+S4,即能判断④不正确.
【详解】
解:①∵四边形ACHI和四边形ABED都是正方形,
∴AI=AC,AB=AD,∠IAC=∠BAD=90°,
∴∠IAC+∠CAB=∠BAD+∠CAB,
即∠IAB=∠CAD,
在△ABI和△ADC中,
,
∴△ABI≌△ADC(SAS),
∴BI=CD,
故①正确;
②过点B作BM⊥IA,交IA的延长线于点M,
∴∠BMA=90°,
∵四边形ACHI是正方形,
∴AI=AC,∠IAC=90°,S1=AC2,
∴∠CAM=90°,
又∵∠ACB=90°,
∴∠ACB=∠CAM=∠BMA=90°,
∴四边形AMBC是矩形,
∴BM=AC,
∵S△ABI=AI•BM=AI•AC=AC2=S1,
由①知△ABI≌△ADC,
∴S△ACD=S△ABI=S1,
即2S△ACD=S1,
故②正确;
③过点C作CN⊥DA交DA的延长线于点N,
∴∠CNA=90°,
∵四边形AKJD是矩形,
∴∠KAD=∠AKJ=90°,S3=AD•AK,
∴∠NAK=∠AKC=90°,
∴∠CNA=∠NAK=∠AKC=90°,
∴四边形AKCN是矩形,
∴CN=AK,
∴S△ACD=AD•CN=AD•AK=S3,
即2S△ACD=S3,
由②知2S△ACD=S1,
∴S1=S3,
在Rt△ACB中,AB2=BC2+AC2,
∴S3+S4=S1+S2,
又∵S1=S3,
∴S1+S4=S2+S3,
即③正确;
④在Rt△ACB中,BC2+AC2=AB2,
∴S3+S4=S1+S2,
∴,
故④错误;
综上,共有3个正确的结论,
故选:C.
【点睛】
本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.
9、C
【分析】
根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.
【详解】
解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.
B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.
C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.
D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.
故选:C.
【点睛】
本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.
10、B
【分析】
分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.
【详解】
解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;
(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;
(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;
(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;
(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,
∴文易同学答对3道题,得60分,
故选:B.
【点睛】
本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键
二、填空题
1、10
【分析】
过E作EF⊥AD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.
【详解】
解:过E作EF⊥AD于F,
∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,
∴△ANM≌△ENM,
∴AM=EM,
∵矩形ABCD,
∴∠B=∠A=∠D=90°,
∵FE⊥AD,
∴∠AFE=∠B=∠A=90°,
∴四边形ABEF为矩形,
∴AF=BE=4,FE=AB=8,
设AM=EM=m,FM=m-4
在Rt△FEM中,根据勾股定理,即,
解得m=10,
∴MD=AD-AM=16-10=6,
在Rt△MDC中,
∴MC=.
故答案为10.
【点睛】
本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.
2、2.5.
【分析】
如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,然后分别求出AC,BC的长度,利用勾股定理求解即可.
【详解】
解:如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,
∵圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,
∴,,,
过点B作BC⊥AD于C,
∴∠BCD =90°,
∵四边形ADEF是矩形,
∴∠ADE=∠DEF=90°
∴四边形BCDE是矩形,
∴,,
∴,
∴,
答:则壁虎捕捉蚊子的最短路程是2.5m.
故答案为:2.5.
【点睛】
本题主要考查了平面展开—最短路径,解题的关键在于能够根据题意确定展开图中AB的长即为所求.
3、
【分析】
根据矩形的对角线互相平分且相等可得OA=OD,然后判断出△AOD是等边三角形,再根据勾股定理解答即可.
【详解】
解:∵四边形ABCD是矩形,
∴OA=OD=AC=×12=6,∠ADC=90°,
∵∠AOD=60°,
∴△AOD是等边三角形,
∴AD=OA=6,
∴.
故答案为:.
【点睛】
本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD是等边三角形.
4、七
【分析】
根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.
【详解】
解:设多边形的边数为n,则
(n-2)•180°-2×360°=180°,
解得n=7.
故答案为:七.
【点睛】
本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键.
5、5cm或5.2cm
【分析】
当点P在BC上,AM>BP,当点P在AB上,AM>BP,当点P在CD上,如图,根据PB=AM,可证Rt△ABM≌Rt△BCP(HL),可证BP⊥AM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点P在AD上,如图,可证Rt△ABM≌Rt△BAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,
【详解】
解:当点P在BC上,AM>BP,当点P在AB上,AM>BP,不合题意,舍去;
当点P在CD上,如图,
∵PB=AM
∵四边形ABCD为正方形,
∴AB=BC=AD=CD=8,
在Rt△ABM和Rt△BCP中,
,
∴Rt△ABM≌Rt△BCP(HL),
∴∠MAB=∠PBC,
∵∠MAB+∠AMB=90°,
∴∠PBC+∠AMB=90°,
∴∠BNM=180°-∠PBC-∠AMB=90°,
∴BP⊥AM,
∵MC=2cm,
∴BM=BC-MC=8-2=6cm,
∴AM=,
∴,
∴,
∴PN=BP-BN=AM-BN=10-4.8=5.2cm,
当点P在AD上,如图,
在Rt△ABM和Rt△BAP中,
,
∴Rt△ABM≌Rt△BAP(HL),
∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,
∴AN=BN,
∵AD∥BC,
∴∠PAN=∠NMB=∠APN,
∴AN=PN=BN=MN,
∵AM=BP=10cm,
∴PN=cm,
∴PN的长为5cm或5.2cm.
故答案为5cm或5.2cm.
【点睛】
本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键.
三、解答题
1、(1);(2)10;(3)(4,2).
【分析】
(1)首先根据勾股定理求出OC=4,OA=8,然后利用待定系数法求解所在直线的解析式即可;
(2)首先由折叠的性质得到AE=CE,然后在Rt△OCE中,根据勾股定理求出AE=CE=5,然后根据等腰三角形的性质求出CF=CE=5,最后根据三角形面积公式求解即可;
(3)根据矩形的中心对称性质可得点M为矩形ABCD对角线的交点,然后根据中点坐标公式求解即可.
【详解】
解:(1)∵OA=2CO,
设OC=x,则OA=2x
在Rt△AOC中,由勾股定理可得OC2+OA2=AC2,
∴x2+(2x)2=(4)2
解得x=4(x=﹣4舍去)
∴OC=4,OA=8
∴A(8,0),C(0,4)
设直线AC解析式为y=kx+b,
∴,解得,
∴直线AC解析式为y=﹣x+4;
(2)由折叠得AE=CE,
设AE=CE=y,则OE=8﹣y,
在Rt△OCE中,由勾股定理可得OE2+OC2=CE2,
∴(8﹣y)2+42=y2
解得y=5
∴AE=CE=5
在矩形OABC中,
∵BCOA,
∴∠CFE=∠AEF,
由折叠得∠AEF=∠CEF,
∴∠CFE=∠CEF
∴CF=CE=5
∴S△CEF=CF•OC=×5×4=10
即重叠部分的面积为10;
(3)∵矩形是一个中心对称图形,对称中心是对角线的交点,
∴任何一个经过对角线交点的直线都把矩形的面积平分,
所以点M即为矩形ABCD对角线的交点,即M点为AC的中点,
∵A(8,0),C(0,4),
∴M点坐标为(4,2).
【点睛】
此题考查了矩形的性质,勾股定理,待定系数法求一次函数表达式等知识,,解题的关键是熟练掌握矩形的性质,勾股定理,待定系数法求一次函数表达式.
2、(1)证明见解析;(2)
【分析】
(1)先证明再证明可得从而有 于是可得结论;
(2)先证明再证明,从而可得结论.
【详解】
证明:(1) 四边形ABCD是平行四边形,
,
∴∠BEF=∠DFE,
四边形BEDF是平行四边形.
(2)由(1)得:
四边形BEDF是平行四边形, 四边形ABCD是平行四边形,
,
∴S△ADF=S△DEC=S△ABF=S△BEC=13S▱ABCD.
【点睛】
本题考查的是平行四边形的判定与性质,熟练的运用一组对边平行且相等的四边形是平行四边形是证明的关键,第(2)问先确定面积为平行四边形ABCD的的三角形是解题的关键.
3、证明见解析
【分析】
先证明再证明可得四边形是平行四边形,于是可得结论.
【详解】
解: □ABCD,
BE=DF,
∴AE=CF,AE//CF
四边形是平行四边形,
【点睛】
本题考查的是平行四边形的判定与性质,掌握“一组对边平行且相等的四边形是平行四边形”是解本题的关键.
4、(1),(2)(3,7)
【分析】
(1)先根据一次函数的解析式求出A、B两点的坐标,再作CE⊥x轴于点E,由全等三角形的判定定理可得出△ABO≌△CAE,由全等三角形的性质可知OA=CE,故可得出C点坐标,再用待定系数法即可求出直线BC的解析式;
(2)由正方形的性质以及△ABO≌△CAE,同理可得△ABO≌△BDM,进而可得点D的坐标.
【详解】
(1)∵一次函数y=-x+3中,
令x=0得:y=3,令y=0,解得x=4,
∴B的坐标是(0,3),A的坐标是(4,0),
如图,作CE⊥x轴于点E,
∵∠BAC=90°,
∴∠OAB+∠CAE=90°,
又∵∠CAE+∠ACE=90°,
∴∠ACE=∠BAO.
在△ABO与△CAE中,
,
∴△ABO≌△CAE(AAS),
∴OB=AE=3,OA=CE=4,OE=OA+AE=7,
则点C的坐标是(7,4),
设直线BC的解析式是y=kx+b(k≠0),
根据题意得:,
解得,
∴直线BC的解析式是y=x+3.
(2)如图,作DM⊥y轴于点M,
∵四边形ABDC为正方形,由(1)知△ABO≌△CAE,
同理可得:△ABO≌△BDM,
∴DM=OB=3,BM=OA=4,OM=OB+BM=7,
则点D的坐标是(3,7).
【点睛】
本题考查的是一次函数综合题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质,正方形的性质,解题的关键是根据题意作出辅助线,构造出全等三角形.
5、(1)3秒后平行于轴;(2)或.
【分析】
(1)设秒后平行于轴,先求出的长,再根据矩形的判定与性质可得,由此建立方程,解方程即可得;
(2)分①点在点右侧,②点在点左侧两种情况,分别根据建立方程,解方程即可得.
【详解】
解:(1),
,
设秒后平行于轴,
,
垂直于轴,垂直于轴,平行于轴,
四边形是矩形,
,即,
解得,
即3秒后平行于轴;
(2)由题意得:经过秒后,,
垂直于轴,点在直线上,且点的坐标为,
点的纵坐标为4,
①当点在点右侧时,,
由得:,
解得,
,
此时点的坐标为;
②当点在点左侧时,,
由得:,
解得,
,
此时点的坐标为;
综上,点的坐标为或.
【点睛】
本题考查了坐标与图形、矩形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论是解题关键.
相关试卷
这是一份数学八年级下册第十五章 四边形综合与测试达标测试,共28页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试同步练习题,共27页。试卷主要包含了如图,M等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试达标测试,共33页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。