初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练
展开这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练,共27页。
京改版八年级数学下册第十五章四边形专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题是真命题的是( )
A.五边形的内角和是720° B.三角形的任意两边之和大于第三边
C.内错角相等 D.对角线互相垂直的四边形是菱形
2、下列图形中,是中心对称图形的是( )
A. B.
C. D.
3、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.2.5 B.2 C. D.
4、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )
A.1 B.1.5 C.2 D.4
5、下图是文易同学答的试卷,文易同学应得( )
A.40分 B.60分 C.80分 D.100分
6、下面图案中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
7、垦区小城镇建设如火如荼,小红家买了新楼.爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式( )
A.1种 B.2种 C.3种 D.4种
8、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )
A. B. C. D.
9、如图,四边形ABCD是平行四边形,下列结论中错误的是( )
A.当▱ABCD是矩形时,∠ABC=90° B.当▱ABCD是菱形时,AC⊥BD
C.当▱ABCD是正方形时,AC=BD D.当▱ABCD是菱形时,AB=AC
10、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,△PAB的面积为___________.
2、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.
3、在四边形ABCD中,若AB//CD,BC_____AD,则四边形ABCD为平行四边形.
4、如图,在矩形ABCD中,AD=3AB,点G,H分别在AD,BC上,连BG,DH,且,当=_______时,四边形BHDG为菱形.
5、若点P(m﹣1,5)与点Q(﹣3,n)关于原点成中心对称,则m﹣n的值是___.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,在平面直角坐标系中,且;
(1)试说明是等腰三角形;
(2)已知.写出各点的坐标:A( , ),B( , ),C( , ).
(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.
①若的一条边与BC平行,求此时点M的坐标;
②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.
2、如图,将矩形沿折叠,使点落在边上的点处;再将矩形沿折叠,使点落在点处且过点.
(1)求证:四边形是平行四边形;
(2)当是多少度时,四边形为菱形?试说明理由.
3、已知:如图,在中,,,.
求证:互相平分.
如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,且已知AB=8,BC=4
(1)判断△ACF的形状,并说明理由;
(2)求△ACF的面积;
4、如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点,求证:BD=2EF.
5、如图1,矩形ABCD中,AB=9,AD=12,点G在CD上,且DG=5,点P从点B出发,以1单位每秒的速度在BC边上向点C运动,设点P的运动时间为x秒.
(1)△APG的面积为y,求y关于x的函数关系式,并求y=34时x的值;
(2)在点P从B向C运动的过程中,是否存在使AP⊥GP的时刻?若存在,求出x的值,若不存在,请说明理由;
(3)如图2,M,N分别是AP、PG的中点,在点P从B向C运动的过程中,线段MN所扫过的图形是什么形状 ,并直接写出它的面积 .
-参考答案-
一、单选题
1、B
【分析】
利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.
【详解】
解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;
B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;
C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;
D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.
2、A
【分析】
把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.
【详解】
解:选项A中的图形是中心对称图形,故A符合题意;
选项B中的图形不是中心对称图形,故B不符合题意;
选项C中的图形不是中心对称图形,故C不符合题意;
选项D中的图形不是中心对称图形,故D不符合题意;
故选A
【点睛】
本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.
3、D
【分析】
利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.
【详解】
解:四边形OABC是矩形,
,
在中,由勾股定理可知:,
,
弧长为,故在数轴上表示的数为,
故选:.
【点睛】
本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.
4、C
【分析】
取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.
【详解】
解:取线段AC的中点G,连接EG,如图所示.
∵AC=BC=8,∠BCA=60°,
∴△ABC为等边三角形,且AD为△ABC的对称轴,
∴CD=CG=AB=4,∠ACD=60°,
∵∠ECF=60°,
∴∠FCD=∠ECG,
在△FCD和△ECG中,
,
∴△FCD≌△ECG(SAS),
∴DF=GE.
当EG∥BC时,EG最小,
∵点G为AC的中点,
∴此时EG=DF=CD=BC=2.
故选:C.
【点睛】
本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.
5、B
【分析】
分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.
【详解】
解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;
(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;
(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;
(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;
(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,
∴文易同学答对3道题,得60分,
故选:B.
【点睛】
本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键
6、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;
B.是轴对称图形,不是中心对称图形,故此选项不合题意;
C.不是轴对称图形,是中心对称图形,故此选项不合题意;
D.既是轴对称图形又是中心对称图形,故此选项符合题意.
故选:D.
【点睛】
本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键.
7、C
【分析】
从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.
【详解】
解:正三角形每个内角是60°,能被360°整除,所以能单独镶嵌成一个平面;
正方形每个内角是90°,能被360°整除,所以能单独镶嵌成一个平面;
正五边形每个内角是108°,不能被360°整除,所以不能单独镶嵌成一个平面;
正六边形每个内角是120°,能被360°整除,所以能单独镶嵌成一个平面.
故只购买一种瓷砖进行平铺,有3种方式.
故选:C.
【点睛】
本题主要考查了平面镶嵌.解这类题,根据组成平面镶嵌的条件,逐个排除求解.
8、B
【分析】
根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.
【详解】
解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.
∵一个直角三角形的周长为3+,
∴AB+BC=3+-2=1+.
等式两边平方得(AB+BC)2= (1+) 2,
即AB2+BC2+2AB•BC=4+2,
∵AB2+BC2=AC2=4,
∴2AB•BC=2,AB•BC=,
即三角形的面积为×AB•BC=.
故选:B.
【点睛】
本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.
9、D
【分析】
由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.
【详解】
解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;
当▱ABCD是菱形时,AC⊥BD,正确,故B不符合题意;
当▱ABCD是正方形时,AC=BD,正确,故C不符合题意;
当▱ABCD是菱形时,AB=BC,故D符合题意;
故选D
【点睛】
本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.
10、D
【分析】
根据轴对称图形与中心对称图形的概念求解即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;
B.是轴对称图形,不是中心对称图形,故此选项不合题意;
C.是轴对称图形,不是中心对称图形,故此选项符合题意;
D.是轴对称图形,也是中心对称图形,故此选项不合题意.
故选D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
二、填空题
1、或或3
【分析】
过B作BM⊥AC于M,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①AB=BP=3,②AB=AP=3,③AP=BP,分别画出图形,再求出面积即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,
由勾股定理得:,
有三种情况:
①当AB=BP=3时,如图1,过B作BM⊥AC于M,
S△ABC=,
,
解得:,
∵AB=BP=3,BM⊥AC,
∴,
∴AP=AM+PM=,
∴△PAB的面积=;
②当AB=AP=3时,如图2,
∵BM=,
∴△PAB的面积S=;
③作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则AP=BP,BN=AN=,
∵四边形ABCD是矩形,NQ⊥AC,
∴PN∥BC,
∵AN=BN,
∴AP=CP,
∴,
∴△PAB的面积;
即△PAB的面积为或或3.
故答案为:或或3.
【点睛】
本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.
2、6
【分析】
根据多边形内角和公式及多边形外角和可直接进行求解.
【详解】
解:由题意得:,
解得:,
∴该多边形的边数为6;
故答案为6.
【点睛】
本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键.
3、
【分析】
根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题.
【详解】
解:根据两组对边分别平行的四边形是平行四边形可知:
∵AB//CD,BC//AD,
∴四边形ABCD为平行四边形.
故答案为://.
【点睛】
本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
4、
【分析】
设 则再利用矩形的性质建立方程求解 从而可得答案.
【详解】
解: 四边形BHDG为菱形,
设
AD=3AB,
设 则
矩形ABCD,
解得:
故答案为:
【点睛】
本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.
5、9
【分析】
根据关于原点对称点的坐标特征求出、的值,再代入计算即可.
【详解】
解:点与点关于原点成中心对称,
,,
即,,
,
故答案为:9.
【点睛】
本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数.
三、解答题
1、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【分析】
(1)设,,,则,由勾股定理求出,即可得出结论;
(2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;
(3)①分当时,;当时,;得出方程,解方程即可;
②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.
【详解】
解:(1)证明:设,,,则,
在中,,
,
∴是等腰三角形;
(2)∵,,
∴,
∴,,,.
∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),
故答案为:12,0;-8,0;0,16;
(3)①如图3-1所示,
当MN∥BC时,
∵AB=AC,
∴∠ABC=∠ACB,
∵MN∥BC,
∴∠AMN=∠ABC,∠ANM=∠ACB,
∴∠AMN=∠ANM,
∴AM=AN,
∴AM=BM,
∴M为AB的中点,
∵,
∴,
∴,
∴点M的坐标为(2,0);
如图3-2所示,当ON∥BC时,
同理可得,
∴,
∴M点的坐标为(4,0);
∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;
②如图3-3所示,当OM=OE时,
∵E是AC的中点,∠AOC=90°,,
∴,
∴此时M的坐标为(0,10);
如图3-4所示,当时,
∴此时M点与A点重合,
∴M点的坐标为(12,0);
如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,
∵OE=AE,EF⊥OA,
∴,
∴,
设,则,
∵,
∴,
解得,
∴M点的坐标为(,0);
综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【点睛】
本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.
2、(1)见解析;(2)当∠B1FE=60°时,四边形EFGB为菱形,理由见解析
【分析】
(1)由题意,,结合,得,同理可得,即,结合,依据平行四边形的判定定理即可证明四边形BEFG是平行四边形;
(2)根据菱形的性质可得,结合(1)中结论得出为等边三角形,依据等边三角形的性质及(1)中结论即可求出角的大小.
【详解】
证明:(1)∵,
∴.
又∵,
∴.
∴.
同理可得:.
∴,
又∵,
∴四边形BEFG是平行四边形;
(2)当时,四边形EFGB为菱形.
理由如下:
∵四边形BEFG是菱形,
∴,
由(1)得:,
∴,
∴为等边三角形,
∴,
∴.
【点睛】
题目主要考查平行四边形和菱形的判定定理和性质,矩形的折叠问题,等边三角形的性质,熟练掌握特殊四边形的判定和性质是解题关键.
3、证明见解析
【分析】
连接,由三角形中位线定理可得,,可证四边形ADEF是平行四边形,由平行四边形的性质可得AE,DF互相平分;
【详解】
证明:连接,
∵AD=DB,BE=EC,
∴,
∵BE=EC,AF=FC,
∴,
∴四边形ADEF是平行四边形,
∴AE,DF互相平分.
【点睛】
本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键.
(1)△ACF是等腰三角形,理由见解析;(2)10;(3)
4、见解析.
【分析】
先证明 再证明EF是△CDB的中位线,从而可得结论.
【详解】
证明:∵AD=AC,AE⊥CD
∴CE=ED
∵F是BC的中点
∴EF是△CDB的中位线
∴BD=2EF
【点睛】
本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.
5、(1)y=-2.5x+54,x=8;(2)存在,x=6;(3)平行四边形;15.
【分析】
(1)PB=x,PC=12-x,然后依据△APG的面积=矩形的面积-三个直角三角形的面积可得到y与x的函数关系式,然后将y=34代入函数关系式可求得x的值;
(2)先依据勾股定理求得PA、PG、AG的长,然后依据勾股定理的逆定理列出关于x的方程,从而可求得x的值;
(3)确定出点P分别与点B和点C重合时,点M、N的位置,然后依据三角形的中位线定理可证明M1M2∥N1N2,N1N2=M1M2,从而可判断出MN扫过区域的形状,然后依据平行四边形的面积公式求解即可.
【详解】
解:(1)∵四边形ABCD为矩形,
∴DC=AB=9,AD=BC=12.
∵DG=5,
∴GC=4.
∵PB=x,PC=12-x,
∴y=9×12-×9×x-×4×(12-x)-×5×12,整理得:y=-2.5x+54.
当y=34时,-2.5x+54=34,解得x=8;
(2)存在.
∵PB=x,PC=12-x,AD=12,DG=5,
∴PA2=AB2+BP2=81+x2,PG2=PC2+GC2=(12-x)2+16,AG2=AD2+DG2=169.
∵当AG2=AP2+PG2时,AP⊥PG,
∴81+x2+(12-x)2+16=169,整理得:x2-12x+36=0,配方得:(x-6)2=0,
解得:x=6;
(3)如图所示:
∵当点P与点B重合时,点M位于M1处,点N位于点N1处,
∴M1为AB的中点,点N1位GB的中点.
∵当点P与点C重合时,点M位于M2处,点N位于点N2处,
∴M2为AC的中点,点N2位CG的中点.
∴M1M2∥BC,M1M2=BC,N1N2∥BC,N1N2=BC.
∴M1M2∥N1N2,N1N2=M1M2.
∴四边形M1M2N2N1为平行四边形.
∴MN扫过的区域为平行四边形.
S=BC•(AB-CG)=6×2.5=15,
故答案为:平行四边形;15.
【点睛】
本题主要考查了列函数关系式、三角形的面积公式、三角形的中位线定理、平行四边形的判定和性质、勾股定理的应用,画出MN扫过的图形是解题的关键.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试课堂检测,共24页。试卷主要包含了以下分别是回收,如图,M等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共29页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步练习题,共25页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。