年终活动
搜索
    上传资料 赚现金

    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数同步测评试卷(无超纲)

    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数同步测评试卷(无超纲)第1页
    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数同步测评试卷(无超纲)第2页
    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数同步测评试卷(无超纲)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第十二章 实数综合与测试练习题

    展开

    这是一份初中数学第十二章 实数综合与测试练习题,共19页。试卷主要包含了观察下列算式,对于两个有理数,下列各数是无理数的是,的相反数是,﹣π,﹣3,,的大小顺序是等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列语句正确的是(  )A.8的立方根是2 B.﹣3是27的立方根C.的立方根是± D.(﹣1)2的立方根是﹣12、可以表示(    A.0.2的平方根 B.的算术平方根C.0.2的负的平方根 D.的立方根3、如果ab分别是的整数部分和小数部分,那么的值是(    A.8 B. C.4 D.4、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是(  )A.2 B.4 C.8 D.65、对于两个有理数,定义一种新的运算:,若,则的值为(   A. B. C. D.6、下列各数是无理数的是(    A. B.3.33 C. D.7、在实数,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有(    ).A.2个 B.3个 C.4个 D.5个8、的相反数是(    A.﹣ B. C. D.39、﹣π,﹣3,的大小顺序是(  )A. B.C. D.10、若一个数的算术平方根与它的立方根的值相同,则这个数是(   )A.1 B.0和1 C.0 D.非负数第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、计算:______.2、如图,ABC在数轴上对应的点分别为a,﹣1,,其中a<﹣1,且ABBC,则|a|=_____.3、若=2,则x=___.4、若一个正数的两个平方根分别为,则_____ ,这个正数是_________.5、比较大小:____+1.(填“>”、“<”或“=”).三、解答题(10小题,每小题5分,共计50分)1、计算:(1)(2)2、已知正数a的两个不同平方根分别是2x﹣2和6﹣3xa﹣4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b2+3a﹣8的立方根.3、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?4、解方程:(1)4(x﹣1)2=36;(2)8x3=27.5、如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含ab的代数式表示出来);(2)如果图中的abab)满足a2+b2=57,ab=12,求a+b的值.6、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.(1)用xcm表示图中空白部分的面积;(2)当x=5cm时空白部分面积为多少?(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?7、已知ab互为相反数,cd互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.8、解方程:(1)x2=81;(2)(x﹣1)3=27.9、计算:(1)(2)10、计算: -参考答案-一、单选题1、A【分析】利用立方根的运算法则,进行判断分析即可.【详解】解:A、8的立方根是2,故A正确.B、3是27的立方根,故B错误.C、的立方根是,故C错误.D、(﹣1)2的立方根是1,故D错误.故选:A.【点睛】本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.2、C【分析】根据平方根和算术平方根的定义解答即可.【详解】解:可以表示0.2的负的平方根,故选:C【点睛】此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.3、B【分析】先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可【详解】ab分别是的整数部分和小数部分,则故选B【点睛】本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键.4、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.【详解】2n的个位数字是2,4,8,6循环,所以810÷4=202…2,则2810的末位数字是4.故选:B【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键.5、D【分析】根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.【详解】解: 解得: 故选D【点睛】本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.6、C【分析】无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.【详解】解:,是有理数,3.33和是有理数,是无理数,故选:C.【点睛】本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.7、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】解:的相反数是﹣故选:A【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.9、B【分析】根据实数的大小比较法则即可得.【详解】解:故选:B.【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.10、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B.【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.二、填空题1、2【分析】直接根据零指数幂、负整数指数幂、乘方的运算法则计算即可.【详解】解:原式故答案为:2.【点睛】本题考查了实数的加减运算,解题的关键是掌握运算法则,正确的进行计算.2、【分析】先根据数轴上点的位置求出,即可得到,由此求解即可.【详解】解:∵ABC在数轴上对应的点分别为a,﹣1,故答案为:【点睛】本题主要考查了实数与数轴,解题的关键在于能够根据题意求出3、8【分析】根据立方根的性值计算即可;【详解】=2,故答案是8.【点睛】本题主要考查了立方根的性质,准确分析计算是解题的关键.4、        【分析】根据平方根的性质,可得 ,从而得到 ,即可求解.【详解】解:∵一个正数的两个平方根分别为解得:∴这个正数为故答案为:【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数是解题的关键.5、<【分析】根据1<<2、1<<2解答即可.【详解】解:∵1<<2,1<<2,∴2<+1<3,+1,故答案为:<.【点睛】本题考查无理数的估算、实数的大小比较,熟练掌握无理数的估算是解答的关键.三、解答题1、(1);(2).【分析】(1)由题意利用算术平方根和立方根的性质进行化简计算即可;(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.【详解】解:(1)(2)【点睛】本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.2、(1);(2)b2+3a﹣8的立方根是5【分析】(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;(2)将(1)中所求ab的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.【详解】解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x∴2x﹣2+6﹣3x=0,x=4,∴2x﹣2=6,a=36,a﹣4b的算术平方根是4,a﹣4b=16,∴36-4b=16b=5;(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,b2+3a﹣8的立方根是5.【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.3、这个长方体的长、宽、高分别为【分析】根据题意设这个长方体的长、宽、高分别为4x、2xx,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可.【详解】解:设这个长方体的长、宽、高分别为4x、2xx根据题意得:4x•2x=24,解得:xx=﹣(舍去).则4x=4,2x=2所以这个长方体的长、宽、高分别为4cm、2cmcm【点睛】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.4、(1)x=4或﹣2;(2)x【分析】(1)先变形为(x﹣1)2=9,然后求9的平方根即可;(2)先变形为x3,再利用立方根的定义得到答案.【详解】解:(1)方程两边除以4得,(x﹣1)2=9,x﹣1=±3,x=4或﹣2;(2)方程两边除以8得,x3所以x【点睛】本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.5、(1);(2)9【分析】(1)由大正方形的边长为可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;(2)由(1)可得:再把a2+b2=57,ab=12,利用平方根的含义解方程即可.【详解】解:(1) 大正方形的边长为 大正方形由两个小正方形与两个长方形组成, (2)由(1)得: a2+b2=57,ab=12, 【点睛】本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.6、(1);(2);(3)13cm【分析】(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;(2)将x=5代入计算可得;(3)根据题意列出方程求解即可.【详解】解:(1)空白部分面积为(2)当x=5时,空白部分面积为(3)根据题意得,解得x=13或-13(舍去),所以,大正方形的边长为13cm【点睛】此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.7、-1【分析】由题意可知,将值代入即可.【详解】解:由题意得:解得【点睛】本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.8、(1)x=±9;(2)x=4【分析】(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.【详解】解:(1)开方得:x=±9;(2)开立方得:x﹣1=3,解得:x=4.【点睛】本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).9、(1)1;(2)【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.【详解】解:(1)==1;(2)====【点睛】本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键.10、1【分析】根据平方根与立方根可直接进行求解.【详解】解:原式【点睛】本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题,共22页。试卷主要包含了若,则整数a的值不可能为,下列各组数中相等的是,已知a=,b=-|-|,c=,的算术平方根是,下列说法正确的是等内容,欢迎下载使用。

    初中数学第十二章 实数综合与测试练习题:

    这是一份初中数学第十二章 实数综合与测试练习题,共18页。试卷主要包含了在下列各数,下列各组数中相等的是,下列各数中,比小的数是,下列各数中,最小的数是,在以下实数等内容,欢迎下载使用。

    数学七年级下册第十二章 实数综合与测试测试题:

    这是一份数学七年级下册第十二章 实数综合与测试测试题,共20页。试卷主要包含了在0.1010010001…,有一个数值转换器,原理如下,下列实数比较大小正确的是,下列说法正确的是,若,则整数a的值不可能为等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map