![2022年最新沪教版(上海)七年级数学第二学期第十二章实数章节测评练习题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12706719/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新沪教版(上海)七年级数学第二学期第十二章实数章节测评练习题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12706719/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新沪教版(上海)七年级数学第二学期第十二章实数章节测评练习题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12706719/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题,共23页。试卷主要包含了在下列各数,观察下列算式,若与互为相反数,则a,在0.1010010001…,如果a,下列等式正确的是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是( )A. B. C. D.2、9的平方根是( )A.±3 B.-3 C.3 D.3、下列说法正确的是( )A.是的平方根 B.是的算术平方根 C.2是-4的算术平方根 D.的平方根是它本身4、在下列各数:、0.2、﹣π、、、0.101001中有理数的个数是( )A.1 B.2 C.3 D.45、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是( )A.2 B.4 C.8 D.66、若与互为相反数,则a、b的值为( )A. B. C. D.7、在0.1010010001…(相邻两个1之间依次多一个0),,,中,无理数有( )A.1个 B.2个 C.3个 D.4个8、如果a、b分别是的整数部分和小数部分,那么的值是( )A.8 B. C.4 D.9、下列等式正确的是( )A. B. C. D.10、下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.负数没有立方根C.任何数的立方根都只有一个D.如果一个数有立方根,那么这个数也一定有平方根第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、对于实数a,b,且(a≠b),我们用符号min{a,b}表示a,b两数中较小的数,例如:min(1,﹣2)=﹣2.(1)min(﹣,﹣)=_____;(2)已知min(,a)=a,min(,b)=,若a和b为两个连续正整数,则a+b=_____.2、的平方根是__.3、下列各数中:12,,,,0.1010010001…(每两个1之间的0依次加1),其中,无理数有_____个.4、已知a,b 是有理数,且满足,那么a=________,b =________.5、若,且a,b是两个连续的整数,则的值为______.三、解答题(10小题,每小题5分,共计50分)1、计算:(1);(2).2、有理数a,b如果满足,那么我们定义a,b为一组团结数对,记为<a,b>.例如:和,因为,所以,则称和为一组团结数对,记为<>.根据以上定义完成下列各题:(1)找出2和2,1和3,-2和这三组数中的团结数对,记为 ;(2)若<5,x>成立,则x的值为 ;(3)若<a,b>成立,b为按一定规律排列成1,-3,9,-27,81,-243,……这列数中的一个,且b与b左右两个相邻数的和是567,求a的值.3、(1)计算:;(2)计算:(﹣2x2)2+x3•x﹣x5÷x;(3)先化简再求值:2(a+2)2﹣4(a+3)(a﹣3)+3(a﹣1)2,其中a=﹣1.4、解方程:(1)4(x﹣1)2=36;(2)8x3=27.5、计算:.6、阅读下面的文字,解答问题.现规定:分别用和表示实数x的整数部分和小数部分,如实数3.14的整数部分是,小数部分是;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即就是的小数部分,所以.(1) , ; , .(2)如果,,求的立方根.7、阅读下列材料:∵,∴,∴的整数部分为3,小数部分为.请你观察上述的规律后试解下面的问题:如果的整数部分为,的小数部分为,求的值.8、计算:(1);(2)﹣16÷(﹣2)2.9、若与互为相反数,且x≠0,y≠0,求的值.10、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记.例如:,∴,则(1)判断7643和4631是否为“多多数”?请说明理由;(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”. -参考答案-一、单选题1、C【分析】首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由AB=AC利用两点间的距离公式便可解答.【详解】解:∵数轴上表示1,的对应点分别为A,B,∴AB=−1,∵点B关于点A的对称点为C,∴AC=AB.∴点C的坐标为:1−(−1)=2−.故选:C.【点睛】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.2、A【分析】根据平方根的定义进行判断即可.【详解】解:∵(±3)2=9∴9的平方根是±3故选:A.【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.3、A【分析】根据平方根的定义及算术平方根的定义解答.【详解】解:A、是的平方根,故该项符合题意;B、4是的算术平方根,故该项不符合题意;C、2是4的算术平方根,故该项不符合题意;D、1的平方根是,故该项不符合题意;故选:A.【点睛】此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键.4、D【分析】有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解.【详解】解:,,∴在、0.2、-π、、、0.101001中,有理数有0.2、、、0.101001,共有4个.故选:D.【点睛】本题考查有理数的意义,掌握有理数的意义是正确判断的前提.5、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.【详解】2n的个位数字是2,4,8,6循环,所以810÷4=202…2,则2810的末位数字是4.故选:B.【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键.6、D【分析】首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.【详解】解:∵与互为相反数,∴+=0,∴,得:,得:,解得:,将代入①得:,解得:.故选:D.【点睛】此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a、b的方程组并求解.7、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;是有理数;是有理数;是无理数;∴无理数有2个,故选B.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.8、B【分析】先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可【详解】则a、b分别是的整数部分和小数部分,则故选B【点睛】本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键.9、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).10、C【分析】利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义.【详解】解:∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴A选项说法不正确;∵一个负数有一个负的立方根,∴B选项说法不正确;∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴C选项说法正确;∵一个负数有一个负的立方根,但负数没有平方根,∴D选项说法不正确.综上,说法正确的是C选项,故选:C.【点睛】本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.二、填空题1、 【分析】(1)直接根据min{a,b}表示a,b两数中较小的数,表示出(﹣,﹣)较小的数即可;(2)根据min{a,b}表示a,b两数中较小的数,得出,根据a和b为两个连续正整数,可得结果.【详解】解:(1)∵,∴,∴min(﹣,﹣)=,故答案为:;(2)∵min(,a)=a,min(,b)=,∴,∵a和b为两个连续正整数,∴,∴,,∴,故答案为:.【点睛】本题考查了实数的大小比较,无理数的估算,熟练掌握实数的大小比较方法以及无理数的估算方法是解本题的关键.2、【分析】根据平方的运算,可得,即可求解【详解】解:∵,的平方根是,故答案为:【点睛】本题主要考查了平方和平方根的性质,熟练掌握一个正数有两个平方根,且互为相反数是解题的关键.3、2【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.【详解】解:无理数有,0.1010010001…(每两个1之间的0依次加1),共有2个,故答案为:2.【点睛】本题考查了无理数,无理数是无限不循环小数,熟练掌握无理数的概念是本题的关键点.4、-2 -1 【分析】利用平方与算术平方根的非负性即可解决.【详解】∵,,且∴,∴,故答案为:-2,-1【点睛】本题考查了有理数的平方的非负性质及算术平方根的非负性质,即几个非负数的和为零,则这几个数都为零.掌握这个性质是本题的关键.5、7【分析】先判断出的取值范围,确定a和b的值,即可求解.【详解】解:∵,∴a=3,b=4,∴a+b=7.故答案为:7.【点睛】本题考查了无理数的估算,正确估算出的取值范围是解题关键.三、解答题1、(1)1;(2)【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.【详解】解:(1),=,=1;(2),=,=,=,=.【点睛】本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键.2、(1)<2,2>,<-2,>(2)(3)【解析】(1)和2是一组团结数,即为<>,和3不是一组团结数,和是一组团结数,即为<>,故答案为:<>,<>;(2)若<5,x>成立,则故答案为:;(3)设b左面相邻的数为x,b为-3x,b右面相邻的数为9x.由题意可得 解得 x=81 所以 b=-243 由于<a,b>成立,则a-243=-243a,解得.【点睛】本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键.3、(1)8﹣;(2)4x4;(3)a2+2a+47,46【分析】(1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;(2)先算乘方,再算乘除,然后合并同类项求解即可;(3)先根据整式的乘法运算法则化简,然后合并同类项,最后代入求解即可.【详解】解:(1)原式=9﹣2﹣(﹣1)=7﹣+1=8﹣;(2)原式=4x4+x4﹣x4=4x4;(3)原式=2(a2+4a+4)﹣4(a2﹣9)+3(a2﹣2a+1)=2a2+8a+8﹣4a2+36+3a2﹣6a+3=a2+2a+47,当a=﹣1时,原式=(﹣1)2+2×(﹣1)+47=1﹣2+47=46.【点睛】此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则.4、(1)x=4或﹣2;(2)x=【分析】(1)先变形为(x﹣1)2=9,然后求9的平方根即可;(2)先变形为x3=,再利用立方根的定义得到答案.【详解】解:(1)方程两边除以4得,(x﹣1)2=9,∴x﹣1=±3,∴x=4或﹣2;(2)方程两边除以8得,x3=,所以x=.【点睛】本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.5、2【分析】先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.【详解】解:【点睛】本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.6、(1)1,,3,;(2)2【分析】(1)先估算出和的范围,再根据题目规定的表示方法写出答案即可;(2)先估算出,的范围,即可求出a,b的值,进一步即可求出结果.【详解】(1)∵1<<2,3<<4,∴[]=1,<>=−1,[]=3,<>=−3,故答案为:1,,3,;(2)∵2<<3,10<<11,∴<>=a=−2,[]=b=10,∴,∴的立方根是2.【点睛】本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.7、a+b的值为25+.【分析】由9π≈28.26,可得其整数部分a=28,由27<28<64,可求得的小数部分,继而可得a+b的值.【详解】解:∵9π≈28.26,∴a=28,∵27<28<64,∴,∴3<<4,∴b=-3,∴a+b=28+-3=25+,∴a+b的值为25+.【点睛】本题主要考查了估算无理数的大小,根据题意估算出a,b的值是解答此题的关键.8、(1)(2)【分析】(1)根据有理数的混合运算进行计算即可;(2)先根据求一个数的立方根求得为,进而根据有理数的混合运算进行计算即可【详解】(1)原式(2)原式【点睛】本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.9、【分析】根据互为相反数的和为零,可得方程,再根据等式的性质变形.【详解】由题意可得:,即,∴,∴.【点睛】本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.10、(1)7643是“多多数”, 4631不是“多多数”,(2)5421或6734【分析】(1)根据新定义,即可判断;(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出A、F(A),根据为一个能被13整除的“多多数”,且,,列出关系式,进而求解.(1)在7643中,7-4=3,6-3=3,∴7643是“多多数”,在4631中,3-3=1,6-1=5,∴4631不是“多多数”,(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,∴A表示的数为∴∴∵∴∴∵个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,∴,解得∴x、y的范围为,且x、y为整数∵若为一个能被13整除的“多多数”,∴ 当时,,,y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是同理,当时,,,没有符合条件的y;当时,,,没有符合条件的y;当时,,,符合条件的;当时,,,没有符合条件的y;当时,,,没有符合条件的y;综上符合条件的是、当时A为5421,当时A为6734综上足条件的“多多数”为5421或6734.【点睛】本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后测评,共22页。试卷主要包含了下列语句正确的是,下列各式中,化简结果正确的是,﹣π,﹣3,,的大小顺序是,下列各数中,比小的数是,在0.1010010001…等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题,共19页。试卷主要包含了下列判断中,你认为正确的是,在下列各数,下列等式正确的是.,9的平方根是,10的算术平方根是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题,共18页。试卷主要包含了3的算术平方根为,下列四个数中,最小的数是,下列说法正确的是,下列说法不正确的是等内容,欢迎下载使用。