数学第十二章 实数综合与测试同步练习题
展开
这是一份数学第十二章 实数综合与测试同步练习题,共21页。试卷主要包含了若,则的值为,若与互为相反数,则a,9的平方根是,下列说法正确的是,在实数中,无理数的个数是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列四个实数中,最大的数是( )A.0 B.﹣2 C.2 D.2、下列判断:①10的平方根是±;②与互为相反数;③0.1的算术平方根是0.01;④()3=a;⑤=±a2.其中正确的有( )A.1个 B.2个 C.3个 D.4个3、4的平方根是( )A.±2 B.﹣2 C.2 D.44、若,则的值为( )A. B. C. D.5、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )A.4 B.6 C.12 D.366、若与互为相反数,则a、b的值为( )A. B. C. D.7、9的平方根是( )A.±9 B.9 C.±3 D.38、下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.负数没有立方根C.任何数的立方根都只有一个D.如果一个数有立方根,那么这个数也一定有平方根9、在实数中,无理数的个数是( )A.1 B.2 C.3 D.410、的算术平方根是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:=___.2、观察下列关于正整数的等式:7*5*2=351410…①8*6*3=482418…②5*4*2=201008…③根据你发现的规律,请计算3*4*5=_____.3、如图是一个“数值转换机”的示意图,若输入的x的值为﹣2,输出的值为﹣,则输入的y值为 _____.4、若a、b为实数,且满足|a-3|+=0,则a-b的值为_____5、若一个正数的两个平方根分别为 a+3与3a+1,则a=__________.三、解答题(10小题,每小题5分,共计50分)1、已知a、b互为倒数,c、d互为相反数,求-+(c+d)2+1的值.2、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,,…,这样的分式是假分式;像,,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:;.解决下列问题:(1)写出一个假分式为: ;(2)将分式化为整式与真分式的和的形式为: ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值.3、已知a,b互为相反数,c,d互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.4、解方程,求x的值.(1) (2)5、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为4∶3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.6、求方程中x 的值(x﹣1)2 ﹣16 = 07、计算:(π-4)0+|-6|-+8、计算(1)(2)9、如图,数轴的原点为O,点A、B、C是数轴上的三点,点B对应的数是1,AB=6,BC=2,动点P、Q同时分别从A、C出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).(1)点A表示的数为 ,点C表示的数为 ;(2)求t为何值时,点P与点Q能够重合?(3)是否存在某一时刻t,使点O平分线段PQ且点P与点Q在原点的异侧?若存在,请求出满足条件的t值.若不存在,请说明理由.10、(1)计算(2)计算(3)解方程(4)解方程组 -参考答案-一、单选题1、C【分析】先根据正数大于0,0大于负数,排除,,然后再用平方法比较2与即可.【详解】解:正数,负数,排除,,,,,,最大的数是2,故选:.【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.2、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错.【详解】解:①10的平方根是±,正确;②是相反数,正确;③0.1的算术平方根是,故错误;④()3=a,正确;⑤a2,故错误;正确的是①②④,有3个.故选:C.【点睛】本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.3、A【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根.【详解】解:∵∴4的平方根是,故选:A.【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.4、B【分析】根据算术平方根、偶次方的非负性确定a和b的值,然后代入计算.【详解】解:,,,,解得,,所以.故选:B【点睛】本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.5、D【分析】根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.【详解】解:∵一个正数a的两个不同平方根是2x-2和6-3x,∴2x-2+6-3x=0,解得:x=4,∴2x-2=2×4-2=8-2=6,∴正数a=62=36.故选择D.【点睛】本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.6、D【分析】首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.【详解】解:∵与互为相反数,∴+=0,∴,得:,得:,解得:,将代入①得:,解得:.故选:D.【点睛】此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a、b的方程组并求解.7、C【分析】根据平方根的定义解答即可.【详解】解:∵(±3)2=9,∴9的平方根是±3.故选:C.【点睛】此题考查了平方根的定义,解题的关键是熟练掌握平方根的定义.如果一个数的平方等于a,即,那么这个数叫做a的平方根.正数有两个平方根,且互为相反数,其中正的那个数也叫算数平方根,0的平方根和算数平方根都是0,负数没有平方根,也没有算术平方根.8、C【分析】利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义.【详解】解:∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴A选项说法不正确;∵一个负数有一个负的立方根,∴B选项说法不正确;∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴C选项说法正确;∵一个负数有一个负的立方根,但负数没有平方根,∴D选项说法不正确.综上,说法正确的是C选项,故选:C.【点睛】本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.9、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:=2,=2,,∴无理数只有,共2个.故选:B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10、A【分析】根据算术平方根的定义即可完成.【详解】∵ ∴的算术平方根是 即 故选:A【点睛】本题考查了算术平方根的计算,掌握算术平方根的定义是关键.二、填空题1、1【分析】根据平方和立方根的定义分别化简,再计算算术平方根即可.【详解】解:,故答案为:1.【点睛】本题考查了实数的运算,解题的关键是掌握算术平方根和立方根的定义.2、121520【分析】观察规律可知,算出3*4*5即可.【详解】①,②,③,.故答案为:121520.【点睛】本题考查数字类找规律问题,根据题目给出的信息找出规律是解题的关键.3、-3【分析】利用程序图列出式子,根据等式的性质和立方根的意义即可求得y值.【详解】解:由题意得:[(﹣2)2+y3]÷2=﹣.∴4+y3=﹣23.∴y3=﹣27.∵(﹣3)3=﹣27,∴y=﹣3.故答案为:﹣3.【点睛】本题主要考查了根据程序框图列式计算,立方根的性质,准确计算是解题的关键.4、2【分析】根据非负性的性质解答,当两个非负数相加,和为0时,必须满足其中的每一项都等于0.【详解】解:∵|a-3|+=0,∴a-3=0,b-1=0,∴a=3,b=1,∴a-b=3-1=2.故答案为2.【点睛】本题考查了非负数的性质,涉及绝对值的性质,算术平方根的性质,有理数的减法.掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.5、-1【分析】直接利用平方根的定义得出a+3+2a+3=0,进而求出答案.【详解】解:∵一个正数的两个平方根分别为a+3和3a+1,∴a+3+3a+1=0,解得:a=-1,故答案为:-1.【点睛】本题考查了平方根的定义.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.三、解答题1、0【分析】互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可.【详解】解:根据题意得:ab=1,c+d=0,则-+(c+d)2+1的值=-1+0+1=0.【点睛】本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键.2、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案.(2)根据题意给出的变形方法即可求出答案.(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一). (2); 故答案为:;(3)∵,∴x2=±1或x2=±2,∴x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.3、-1【分析】由题意可知,,,,将值代入即可.【详解】解:由题意得:,;解得∴.【点睛】本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.4、(1)或 ;(2)x=−【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x−1可做一个整体求出其立方根,进而求出x的值.【详解】解:(1), ,或 ;(2)8(x−1)3=−27,(x−1)3=−,x−1=−,x=−.【点睛】本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.5、能,桌面长宽分别为28cm和21cm【分析】本题可设它的长为4x,则它的宽为3x,根据面积公式列出方程解答即可求出x的值,再代入长宽的表达式,看是否符合条件即可.【详解】能做到,理由如下:设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588.(cm)3x=3×7=21(cm).∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm,∴能够裁出一个长方形面积为588cm2并且长宽之比为4∶3的桌面,答:桌面长宽分别为28cm和21cm.【点睛】本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点.6、或【分析】根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)【详解】解:(x﹣1)2 ﹣16 = 0或解得或【点睛】本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键.7、9【分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.8、(1);(2)【分析】(1)利用完全平方公式,平方差公式展开,合并同类项即可;(2)根据幂的意义,算术平方根,立方根的定义计算.【详解】(1)==;(2)==.【点睛】本题考查了完全平方公式,平方差公式,算术平方根即一个数的正的平方根,立方根如果一个数的立方等于a,则这个数叫做a的立方根;熟练掌握公式,正确理解算术平方根,立方根的定义是解题的关键.9、(1)-5,3;(2)t=4;(3)存在,t=,理由见解析.【分析】(1)由点B对应的数及线段AB、BC的长,可找出点A、C对应的数;(2)根据点P、Q的出发点、速度及方向,由追击的等量关系列出含t的方程,解方程即可;(3)由题意得OP=OQ,据此列一元一次方程,解此方程即可.【详解】解:(1)1-6=-5,1+2=3即点A表示的数为 -5,点C表示的数为3,故答案为:-5,3;(2)若点P与点Q能够重合,则AP-CQ=AC,即3t-t=82t=8t=4答:当t=4时,点P与点Q能够重合.(3)存在,理由如下:若点O为PQ中点,且点P与点Q在原点的异侧,即OP=OQ5-3t=3+t4t=2t=答:当t=时,点O平分线段PQ且点P与点Q在原点的异侧.【点睛】本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键.10、(1);(2);(3)或;(4).【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即可得.【详解】解:(1)原式;(2)原式;(3),,,或;(4),由②①得:,解得,将代入①得:,解得,故方程组的解为.【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.
相关试卷
这是一份沪教版 (五四制)第十二章 实数综合与测试同步训练题,共22页。试卷主要包含了下列说法正确的是,下列各组数中相等的是,9的平方根是,化简计算﹣的结果是,的值等于等内容,欢迎下载使用。
这是一份初中沪教版 (五四制)第十二章 实数综合与测试课时训练,共20页。试卷主要包含了100的算术平方根是,下列判断,3的算术平方根为,下列运算正确的是,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试单元测试同步测试题,共22页。试卷主要包含了在0.1010010001…,在下列四个实数中,最大的数是,下列各式中正确的是,以下正方形的边长是无理数的是等内容,欢迎下载使用。