沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题
展开
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共18页。试卷主要包含了下列运算正确的是,下列等式正确的是.,已知a=,b=-|-|,c=,下列说法中正确的有,10的算术平方根是,下列说法不正确的是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点A在数轴上的位置如图所示,则点A表示的数可能是( )A. B. C. D.2、在0.1010010001…(相邻两个1之间依次多一个0),,,中,无理数有( )A.1个 B.2个 C.3个 D.4个3、下列整数中,与-1最接近的是( )A.2 B.3 C.4 D.54、下列运算正确的是( )A. B. C. D.5、下列等式正确的是( ).A. B. C. D.6、已知a=,b=-|-|,c=(-2)3,则a,b,c的大小关系是( )A.b<a<c B.b<c<a C.c<b<a D.a<c<b7、下列说法中正确的有( )①±2都是8的立方根 ②=x③的平方根是3 ④﹣=2.A.1个 B.2个 C.3个 D.4个8、10的算术平方根是( )A.10 B. C. D.9、下列说法不正确的是( )A.0的平方根是0 B.一个负数的立方根是一个负数C.﹣8的立方根是﹣2 D.8的算术平方根是210、16的平方根是( )A.±8 B.8 C.4 D.±4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正方形的面积为5,则它的边长为_____.2、比较大小:_____2(填“>”或“<”或“=”)3、若一个正数的两个平方根分别为 a+3与3a+1,则a=__________.4、观察下列关于正整数的等式:7*5*2=351410…①8*6*3=482418…②5*4*2=201008…③根据你发现的规律,请计算3*4*5=_____.5、计算:__________.三、解答题(10小题,每小题5分,共计50分)1、计算:.2、将下列各数填入相应的横线上:整数:{ …}有理数: { …}无理数: { …}负实数: { …}.3、计算:.4、已知x-2的平方根是±2,x+2y+7的立方根是3,求3x+y的算术平方根.5、计算:.6、计算:(1);(2)﹣16÷(﹣2)2.7、已知的平方根是,的立方根是2,是的整数部分,求的算术平方根.8、阅读材料,回答问题.下框中是小马同学的作业,老师看了后,找来小马.问道:“小马同学,你标在数轴上的两个点对应题中两个无理数,是吗?”小马点点头.老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”请把实数|﹣|,﹣π,﹣4,,2表示在数轴上,并比较它们的大小(用<号连接).解:请你帮小马同学将上面的作业做完.9、对于有理数a,b,定义运算:(1)计算的值; (2)填空_______:(填“>”、“<”或“=”)(3)与相等吗?若相等,请说明理由.10、计算 -参考答案-一、单选题1、A【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A表示的数在4至4.5之间,A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;B、∵9<10<16,∴3<<4,故该选项不符合题意;C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;D、∵25<30<36,∴5<<6,故该选项不符合题意;故选:A.【点睛】本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.2、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;是有理数;是有理数;是无理数;∴无理数有2个,故选B.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.3、A【分析】先由无理数估算,得到,且接近3,即可得到答案.【详解】解:由题意,∵,且接近3,∴最接近的是整数2;故选:A.【点睛】本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.4、B【分析】依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可.【详解】A、,故A错误;B、,故B正确;C.,故C错误;D.−|-2|=-2,故D错误.故选:B.【点睛】本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键.5、由不等式的性质可知:5-2<−2<6-2,即3<−2<故选:C.【点睛】本题主要考查的是估算无理数的大小,明确被开方数越大对应的算术平方根也越大是解题的关键.4.C【分析】分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.【详解】解:A、,故此选项错误;B、,故此选项错误;C、由B得此选项正确;D、,故此选项错误.故选:C.【点睛】此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.6、C【分析】本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较.【详解】解:由题意得:a===4,b==,c==-8,∴c<b<a.故选:C.【点睛】本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键.7、B【分析】根据平方根和立方根的定义进行判断即可.【详解】解:①2是8的立方根,-2不是8的立方根,原说法错误;②=x,正确;③,9的平方根是3,原说法错误;④﹣=2,正确;综上,正确的有②④共2个,故选:B.【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.8、B【分析】直接利用算术平方根的求法即可求解.【详解】解:的算术平方根是,故选:B.【点睛】本题主要考查了算术平方根,解题的关键是掌握求解的运算法则.9、D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案.【详解】解:A、0的平方根是0,原说法正确,故此选项不符合题意;B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D、8的算术平方根是2,原说法不正确,故此选项符合题意;故选:D.【点睛】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.10、D【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.二、填空题1、【分析】根据正方形面积根式求出边长,即可得出答案.【详解】解:边长为: 故答案为【点睛】本题考查了算术平方根,关键是会求一个数的算术平方根.2、>【分析】根据即可得出答案.【详解】∵,∴,故答案为:>.【点睛】本题主要考查的是比较实数的大小,熟练掌握相关知识是解题的关键.3、-1【分析】直接利用平方根的定义得出a+3+2a+3=0,进而求出答案.【详解】解:∵一个正数的两个平方根分别为a+3和3a+1,∴a+3+3a+1=0,解得:a=-1,故答案为:-1.【点睛】本题考查了平方根的定义.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.4、121520【分析】观察规律可知,算出3*4*5即可.【详解】①,②,③,.故答案为:121520.【点睛】本题考查数字类找规律问题,根据题目给出的信息找出规律是解题的关键.5、2【分析】直接利用立方根、绝对值化简得出答案.【详解】解:原式.故答案为:2.【点睛】本题主要考查了实数的运算,解题的关键是正确化简.三、解答题1、【分析】根据求一个数的算术平方根,负整数指数幂,0次幂进行计算即可【详解】原式= =.【点睛】本题考查了求一个数的算术平方根,负整数指数幂,0次幂,正确的计算是解题的关键.2、;;,-3.030030003…,π;-3.030030003…,;【分析】有理数与无理数统称实数,整数与分数统称有理数,按照无理数、有理数的定义及实数的分类标准进行分类即可.【详解】整数:{ }有理数:{ }无理数:{,-3.030 030 003…,π…};负实数:{-3.030 030 003…, …};【点睛】本题考查的是实数的概念与分类,掌握“实数的分类与概念”是解本题的关键.3、1【分析】根据平方根与立方根可直接进行求解.【详解】解:原式.【点睛】本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.4、5【分析】根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案.【详解】解:∵x-2的平方根是±2,∴x-2=4,解得:x=6,∵x+2y+7的立方根是3,∴6+2×y+7=27,解得:y=7,∴3x+y=25,∴3x+y的算术平方根是5.【点睛】本题主要考查平方根以及立方根的性质、算术平方根,正确得出x,y的值是解题的关键.5、【分析】根据有理数的乘方运算,有理数的乘方运算,化简绝对值,最后进行实数的混合运算即可【详解】解:原式.【点睛】本题考查了实数的混合运算,正确的计算是解题的关键.6、(1)(2)【分析】(1)根据有理数的混合运算进行计算即可;(2)先根据求一个数的立方根求得为,进而根据有理数的混合运算进行计算即可【详解】(1)原式(2)原式【点睛】本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.7、【分析】直接利用平方根以及立方根和估算无理数的大小得出a,b,c的值进而得出答案.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得:a=5,∵3a+b-9的立方根是2,∴15+b-9=8,解得:b=2,∵4<<5,c是的整数部分,∴c=4,∴a+2b+c=5+4+4=13,∴a+2b+c的算术平方根为【点睛】此题主要考查了平方根以及立方根和估算无理数的大小,正确得出a,b,c的值是解题关键.8、图见解析,﹣4<﹣π<|﹣|<2<.【分析】根据和确定原点,根据数轴上的点左边小于右边的排序依次表示即可.【详解】把实数||,,,,2表示在数轴上如图所示,<<||<2<.【点睛】本题考查用数轴比较点的大小,根据题意先确定原点是解题的关键.9、(1);(2)=;(3)相等,证明见详解.【分析】(1)按照给定的运算程序,一步一步计算即可; (2)先按新定义运算,再比较大小; (3)按新定义分别运算即可说明理由.【详解】解:(1);(2),,∴=,故答案是:=;(3)相等∵,,∴=.【点睛】此题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果.10、【分析】根据立方根,算术平方根,绝对值的计算法则进行求解即可.【详解】解:.【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共20页。试卷主要包含了估计的值应该在.,下列说法正确的是,的相反数是,实数﹣2的倒数是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习,共19页。试卷主要包含了若,则的值为,在以下实数,下列运算正确的是,下列各组数中相等的是,在0.1010010001…等内容,欢迎下载使用。
这是一份初中沪教版 (五四制)第十二章 实数综合与测试课后练习题,共19页。试卷主要包含了﹣π,﹣3,,的大小顺序是,下列说法正确的是,关于的叙述,错误的是,16的平方根是等内容,欢迎下载使用。