![2022年最新精品解析沪教版(上海)七年级数学第二学期第十二章实数月考试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12706771/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪教版(上海)七年级数学第二学期第十二章实数月考试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12706771/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪教版(上海)七年级数学第二学期第十二章实数月考试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12706771/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第十二章 实数综合与测试课时练习
展开
这是一份2021学年第十二章 实数综合与测试课时练习,共23页。试卷主要包含了计算2﹣1+30=,下列说法中,正确的是,若,则的值为,在0.1010010001…,估算的值是在之间等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在实数中,无理数的个数是( )A.1 B.2 C.3 D.42、若,则的值为( )A. B. C. D.3、下列各数是无理数的是( )A.-3 B. C.2.121121112 D.4、计算2﹣1+30=( )A. B.﹣1 C.1 D.5、下列说法中,正确的是( )A.无限小数都是无理数B.数轴上的点表示的数都是有理数C.任何数的绝对值都是正数D.和为0的两个数互为相反数6、若,则的值为( )A. B. C. D.或7、在0.1010010001…(相邻两个1之间依次多一个0),,,中,无理数有( )A.1个 B.2个 C.3个 D.4个8、估算的值是在( )之间A.5和6 B.6和7 C.7和8 D.8和99、点A在数轴上的位置如图所示,则点A表示的数可能是( )A. B. C. D.10、下列说法正确的是( )A.是最小的正无理数 B.绝对值最小的实数不存在C.两个无理数的和不一定是无理数 D.有理数与数轴上的点一一对应第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知x2=36,那么x=___________;如果(-a)2=(7)2,那么a=_____________2、给定二元数对(p,q),其中或1,或1.三种转换器A,B,C对(p,q)的转换规则如下:(1)在图1所示的“A—B—C”组合转换器中,若输入,则输出结果为________;(2)在图2所示的“①—C—②”组合转换器中,若当输入和时,输出结果均为0,则该组合转换器为“____—C—____”(写出一种组合即可).3、计算:__________.4、已知432=1849,442=1936,452=2025,462=2116,若n为整数,且n<<n+1,则n的值为 _____.5、比较大小:_________.三、解答题(10小题,每小题5分,共计50分)1、观察下列等式:第1个等式:12=13;第2个等式:(1+2)2=13+23;第3个等式:(1+2+3)2=13+23+33;第4个等式:(1+2+3+4)2=13+23+33+43;……按照以上规律,解决下列问题:(1)写出第5个等式:__________________;(2)写出第n(n为正整数)个等式:__________________(用含n的等式表示);(3)利用上述规律求值:.2、求下列各数的立方根:(1)729(2)(3)(4)3、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3﹣a3=(b﹣a)(b2+ab+a2).)(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.4、求下列各数的算术平方根:(1)0.64 (2)5、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,,…,这样的分式是假分式;像,,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:;.解决下列问题:(1)写出一个假分式为: ;(2)将分式化为整式与真分式的和的形式为: ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值.6、求下列各式的值:(1)(2)(3)7、如图,数轴的原点为O,点A、B、C是数轴上的三点,点B对应的数是1,AB=6,BC=2,动点P、Q同时分别从A、C出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).(1)点A表示的数为 ,点C表示的数为 ;(2)求t为何值时,点P与点Q能够重合?(3)是否存在某一时刻t,使点O平分线段PQ且点P与点Q在原点的异侧?若存在,请求出满足条件的t值.若不存在,请说明理由.8、有理数a,b如果满足,那么我们定义a,b为一组团结数对,记为<a,b>.例如:和,因为,所以,则称和为一组团结数对,记为<>.根据以上定义完成下列各题:(1)找出2和2,1和3,-2和这三组数中的团结数对,记为 ;(2)若<5,x>成立,则x的值为 ;(3)若<a,b>成立,b为按一定规律排列成1,-3,9,-27,81,-243,……这列数中的一个,且b与b左右两个相邻数的和是567,求a的值.9、计算:.10、已知正数a的两个不同平方根分别是2x﹣2和6﹣3x,a﹣4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b2+3a﹣8的立方根. -参考答案-一、单选题1、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:=2,=2,,∴无理数只有,共2个.故选:B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、B【分析】根据算术平方根、偶次方的非负性确定a和b的值,然后代入计算.【详解】解:,,,,解得,,所以.故选:B【点睛】本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.3、D【分析】根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.【详解】A、-3是整数,属于有理数.B、是分数,属于有理数.C、2.121121112是有限小数,属于有理数.D、是无限不循环小数,属于无理数.故选:D.【点睛】本题主要是考察无理数的概念,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.4、D【分析】利用负整数指数幂和零指数幂的意义进行化简计算即可.【详解】解:原式=+1=.故选:D.【点睛】本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.5、D【分析】根据实数的性质依次判断即可.【详解】解:A.∵无限不循环小数才是无理数.∴A错误.B.∵数轴上的点也可以表示无理数.∴B错误.C.∵0的绝对值是0,既不是正数也不是负数.∴C错误.D.∵和为0的两个数互为相反数.∴D正确.故选:D.【点睛】本题考查了无理数的定义,实数与数轴的关系,绝对值的性质,以及相反数的定义,熟练掌握各知识点是解答本题的关键.6、C【分析】化简后利用平方根的定义求解即可.【详解】解:∵,∴x2-9=55,∴x2=64,∴x=±8,故选C.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.7、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;是有理数;是有理数;是无理数;∴无理数有2个,故选B.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.8、C【分析】根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故.【详解】∵∴∴故选:C.【点睛】本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.9、A【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A表示的数在4至4.5之间,A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;B、∵9<10<16,∴3<<4,故该选项不符合题意;C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;D、∵25<30<36,∴5<<6,故该选项不符合题意;故选:A.【点睛】本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.10、C【分析】利用正无理数,绝对值,以及数轴的性质判断即可.【详解】解:、不存在最小的正无理数,不符合题意;、绝对值最小的实数是0,不符合题意;、两个无理数的和不一定是无理数,例如:,符合题意;、实数与数轴上的点一一对应,不符合题意.故选:C.【点睛】本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.二、填空题1、±6##6或-6 ±7 【分析】根据平方根的定义求解即可.【详解】解:∵(±6)2=36,∴当x2=36时,则x=±6;∵(-a)2=(7)2,∴a2=49,∵(±7)2=49,∴a=±7;故答案为:±6;±7.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根.0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.2、1 A A 【分析】(1)利用转换器C的规则即可求出答案.(2)利用转换器A、B、C的规则,写出一组即可.【详解】(1)解:利用转换器C的规则可得:输出结果为1.(2)解:当输入时,若①对应A,此时经过A、C输出结果为(1,0),②对应A,输出结果恰好为0.当输入时,若①对应A,此时经过A、C输出结果为(0,1),②对应A,输出结果恰好为0.故答案为:1;A;A.【点睛】本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目.3、3【分析】根据实数的运算法则即可求出答案.【详解】解:原式.【点睛】本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.4、44【分析】由已知条件的提示可得,即,从而可得答案.【详解】解:,∴即 又∵,n为整数,.故答案为:44.【点睛】本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.5、<【分析】先把两个数同时平方后比较大小,因为都是正数,即平方后的数越大,其这个数越大,由此求解即可.【详解】解:∵,∴,故答案为:<.【点睛】本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法.三、解答题1、(1)(1+2+3+4+5)2=13+23+33+43+53;(2)(1+2+3+4+5+…+n)2=13+23+33+43+53+…+n3;(3)265【分析】(1)根据前几个等式的变化规律解答即可;(2)根据前几个等式的变化规律写出第n个等式即可;(3)根据变化规律和平方差公式进行计算即可.(1)解:根据题意,第5个等式为(1+2+3+4+5)2=13+23+33+43+53,故答案为:(1+2+3+4+5)2=13+23+33+43+53;(2)解:根据题意,第n个等式为(1+2+3+4+5+…+n)2=13+23+33+43+53+…+n3,故答案为:(1+2+3+4+5+…+n)2=13+23+33+43+53+…+n3;(3)解:由(2)中(1+2+3+4+5+…+n)2=13+23+33+43+53+…+n3知,(1+2+3+4+5+…+20)2=13+23+33+43+53+…+203①,(1+2+3+4+5+…+10)2=13+23+33+43+53+…+103②,①-②得:(1+2+3+4+5+…+20+1+2+3+4+5+…+10)×(11+12+13+…+20)=113+123+133+…+203,∴=(1+2+3+4+5+…+20+1+2+3+4+5+…+10)=265.【点睛】本题考查数字类规律探究、平方差公式、与实数运算相关的规律题,理解题意,正确得出等式的变化规律并能灵活运用是解答的关键.2、(1)9;(2);(3);(4)-5【分析】根据立方根的定义,找到一个数,使其立方等于已知的数,从而可得答案.【详解】解:(1)因为93=729,所以729的立方根是9,即;(2),因为,所以的立方根是,即;(3)因为,所以的立方根是,即;(4).【点睛】本题考查的是求解一个数的立方根,掌握“利用立方根的含义求解一个数的立方根”是解本题的关键.3、(1)12不是复合数;证明见解析;(2)98和56.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.【详解】(1)12不是复合数,∵找不到两个整数a,b,使a3﹣b3=12,故12不是复合数,设“正点”P所表示的数为x(x为正整数),则a=x﹣1,b=x+1,∴(x+1)3﹣(x﹣1)3 =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除;(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,∴m2﹣n2=7,∵m,n都是正整数,∴,∴,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.【点睛】本题考查关于实数的新定义题型,理解新定义是解题的关键.4、 (1) 0.8; (2) 【分析】根据算术平方根的定义求解即可.【详解】解:(1)因为0.82=0.64,所以0.64的算术平方根是0.8,即=0.8.(2)因为,所以的算术平方根是,即.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.5、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案.(2)根据题意给出的变形方法即可求出答案.(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一). (2); 故答案为:;(3)∵,∴x2=±1或x2=±2,∴x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.6、(1)6;(2);(3)【分析】利用立方与开立方互为逆运算进行化简求值.【详解】解:(1)(2)(3).【点睛】本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.7、(1)-5,3;(2)t=4;(3)存在,t=,理由见解析.【分析】(1)由点B对应的数及线段AB、BC的长,可找出点A、C对应的数;(2)根据点P、Q的出发点、速度及方向,由追击的等量关系列出含t的方程,解方程即可;(3)由题意得OP=OQ,据此列一元一次方程,解此方程即可.【详解】解:(1)1-6=-5,1+2=3即点A表示的数为 -5,点C表示的数为3,故答案为:-5,3;(2)若点P与点Q能够重合,则AP-CQ=AC,即3t-t=82t=8t=4答:当t=4时,点P与点Q能够重合.(3)存在,理由如下:若点O为PQ中点,且点P与点Q在原点的异侧,即OP=OQ5-3t=3+t4t=2t=答:当t=时,点O平分线段PQ且点P与点Q在原点的异侧.【点睛】本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键.8、(1)<2,2>,<-2,>(2)(3)【解析】(1)和2是一组团结数,即为<>,和3不是一组团结数,和是一组团结数,即为<>,故答案为:<>,<>;(2)若<5,x>成立,则故答案为:;(3)设b左面相邻的数为x,b为-3x,b右面相邻的数为9x.由题意可得 解得 x=81 所以 b=-243 由于<a,b>成立,则a-243=-243a,解得.【点睛】本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键.9、.【分析】先计算算术平方根、立方根、乘方、化简绝对值,再计算实数的加减法即可得.【详解】解:原式.【点睛】本题考查了算术平方根、立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.10、(1),;(2)b2+3a﹣8的立方根是5【分析】(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;(2)将(1)中所求a、b的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.【详解】解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x,∴2x﹣2+6﹣3x=0,∴x=4,∴2x﹣2=6,∴a=36,∵a﹣4b的算术平方根是4,∴a﹣4b=16,∴36-4b=16∴b=5;(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,∴b2+3a﹣8的立方根是5.【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业,共20页。试卷主要包含了下列说法中正确的有,的相反数是,若,则的值为,以下正方形的边长是无理数的是,下列等式正确的是,的值等于等内容,欢迎下载使用。
这是一份初中数学第十二章 实数综合与测试当堂达标检测题,共22页。试卷主要包含了估计的值在,计算2﹣1+30=,﹣π,﹣3,,的大小顺序是,在以下实数,对于两个有理数,下列运算正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第十二章 实数综合与测试综合训练题,共20页。试卷主要包含了100的算术平方根是,下列各数中,最小的数是,的算术平方根是,下列整数中,与-1最接近的是,观察下列算式等内容,欢迎下载使用。