搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数综合测试试题(含详解)

    2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数综合测试试题(含详解)第1页
    2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数综合测试试题(含详解)第2页
    2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数综合测试试题(含详解)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试习题

    展开

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试习题,共21页。试卷主要包含了化简计算﹣的结果是,下列整数中,与-1最接近的是,的值等于,下列各数是无理数的是,在0.1010010001…,对于两个有理数等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列语句正确的是(  )A.8的立方根是2 B.﹣3是27的立方根C.的立方根是± D.(﹣1)2的立方根是﹣12、在, 0, , 0.010010001……, , -0.333…,   3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有(      A.2个 B.3个 C.4个 D.5个3、若一个数的算术平方根与它的立方根的值相同,则这个数是(   )A.1 B.0和1 C.0 D.非负数4、化简计算的结果是(    A.12 B.4 C.﹣4 D.﹣125、下列整数中,与-1最接近的是(    A.2 B.3 C.4 D.56、的值等于(    A. B.-2 C. D.27、下列各数是无理数的是(    A.-3 B. C.2.121121112 D.8、在0.1010010001…(相邻两个1之间依次多一个0),中,无理数有(    A.1个 B.2个 C.3个 D.4个9、对于两个有理数,定义一种新的运算:,若,则的值为(   A. B. C. D.10、实数﹣2的倒数是(  )A.2 B.﹣2 C. D.﹣第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知abab为两个连续的自然数,则a+b=_____.2、用“*”定义一种新运算:对于任意有理数ab,规定a*bab2+2a,则3*(-2)=_____________.3、若实数满足,则=_____________.4、观察下列关于正整数的等式:7*5*2=351410…①8*6*3=482418…②5*4*2=201008…③根据你发现的规律,请计算3*4*5=_____.5、已知xy是实数,且+(y-3)2=0,则xy的立方根是__________.三、解答题(10小题,每小题5分,共计50分)1、已知的平方根是的立方根是2,的整数部分,求的算术平方根.2、(1)计算(2)计算(3)解方程(4)解方程组3、求下列各式中的值:(1)                        (2)4、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,…,这样的分式是假分式;像,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:.解决下列问题:(1)写出一个假分式为:    (2)将分式化为整式与真分式的和的形式为:    ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值.5、已知一个正数x的平方根是a+3和2a-15,求ax的值6、阅读下面材料,并按要求完成相应问题:定义:如果一个数的平方等于-1,记为,这个数叫做虚数单位,把形如的数叫做复数,其中是这个复数的实部,是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.例如:应用:(1)计算(2)如果正整数ab满足,求ab的值.(3)将化为均为实数)的形式,(即化为分母中不含的形式).7、求下列各数的平方根:(1)121            (2)            (3)(-13)2                 (4) 8、计算:(π-4)0+|-6|-+9、已知(1)求xy的值;(2)求x+y的算术平方根.10、把下列各数分别填入相应的集合里.,0,,0.1010010001…(每两个1之间依次多一个0)(1)整数集合:{                        …}(2)正数集合:{                        …}(3)无理数集合:{                        …} -参考答案-一、单选题1、A【分析】利用立方根的运算法则,进行判断分析即可.【详解】解:A、8的立方根是2,故A正确.B、3是27的立方根,故B错误.C、的立方根是,故C错误.D、(﹣1)2的立方根是1,故D错误.故选:A.【点睛】本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.2、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:=1,=2,,3,∴无理数有,2.010101…(相邻两个1之间有1个0)共4个.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B.【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.4、B【分析】根据算术平方根和立方根的计算法则进行求解即可.【详解】解:故选B.【点睛】本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.5、A【分析】先由无理数估算,得到,且接近3,即可得到答案.【详解】解:由题意,,且接近3,最接近的是整数2;故选:A.【点睛】本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.6、D【分析】由于表示4的算术平方根,由此即可得到结果.【详解】解:∵4的算术平方根为2,的值为2.故选D.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.7、D【分析】根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.【详解】A、-3是整数,属于有理数.B、是分数,属于有理数.C、2.121121112是有限小数,属于有理数.D、是无限不循环小数,属于无理数.故选:D.【点睛】本题主要是考察无理数的概念,初中数学中常见的无理数主要是:等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.8、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;是有理数;是有理数;是无理数;∴无理数有2个,故选B.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.9、D【分析】根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.【详解】解: 解得: 故选D【点睛】本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.10、D【分析】根据倒数的定义即可求解.【详解】解:-2的倒数是﹣故选:D【点睛】本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.二、填空题1、9【分析】利用已知得出ab的值,进而求出a+b的平方根.【详解】解:∵ab是两个连续的自然数, a=4,b=5,的值为9.故答案为:9.【点睛】此题主要考查了估算无理数的大小,正确得出ab的值是解题关键.2、18【分析】根据a*bab2+2a,可得:3*(−2)=3×(−2)2+2×3,据此求出算式的值是多少即可.【详解】解:∵a*bab2+2a∴3*(−2),=3×(−2)2+2×3,=3×4+6,=12+6,=18.故答案为:18.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.3、1【分析】根据绝对值与二次根式的非负性求出ab的值,故可求解.【详解】解:∵a-2=0,b-4=0a=2,b=4=故答案为:1.【点睛】此题主要考查代数式求值,解题的关键是熟知非负性的运用.4、121520【分析】观察规律可知,算出3*4*5即可.【详解】故答案为:121520.【点睛】本题考查数字类找规律问题,根据题目给出的信息找出规律是解题的关键.5、【分析】根据二次根式和平方的非负性,可得 ,即可求解.【详解】解:根据题意得:解得:故答案为:【点睛】本题主要考查了二次根式和平方的非负性,立方根的性质,熟练掌握二次根式和平方的非负性,立方根的性质是解题的关键.三、解答题1、【分析】直接利用平方根以及立方根和估算无理数的大小得出abc的值进而得出答案.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得:a=5,∵3a+b-9的立方根是2,∴15+b-9=8,解得:b=2,∵4<<5,c的整数部分,c=4,a+2b+c=5+4+4=13,a+2b+c的算术平方根为【点睛】此题主要考查了平方根以及立方根和估算无理数的大小,正确得出abc的值是解题关键.2、(1);(2);(3);(4)【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即可得.【详解】解:(1)原式(2)原式(3)(4)由②①得:解得代入①得:解得故方程组的解为【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.3、(1);(2)【分析】(1)把原方程化为,再利用立方根的含义解方程即可;(2)直接利用平方根的含义把原方程化为,再解两个一次方程即可.【详解】解:(1) 解得: (2) 解得:【点睛】本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.4、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案.(2)根据题意给出的变形方法即可求出答案.(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一). (2)故答案为:(3)∵x2=±1或x2=±2,x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.5、4,49【分析】根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.【详解】解:∵正数有2个平方根,它们互为相反数,解得所以【点睛】本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.6、(1);(2);(3)【分析】(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;(2)利用平方差公式计算得出答案;(3)分子分母同乘以(2-i)后,把分母化为不含i的数后计算.【详解】(1)∴原式(2)ab是正整数(3)【点睛】本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.7、 (1)±11; (2) ; (3)±13; (4)±8【分析】(1)直接根据平方根的定义求解;(2)把带分数化成假分数,再根据平方根的定义求解;(3)(4)先化简,再根据平方根的定义求解.【详解】含有乘方运算先求出它的幂,再开平方.(1)因为(±11)2=121,所以121的平方根是±11;(2),因为, 所以的平方根是(3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;(4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.【点睛】本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.8、9【分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.9、(1);(2)2【分析】(1)根据绝对值和平方根的非负性求出xy的值;(2)先计算的值,即可得出的算术平方根.【详解】(1)由题可得:解得:(2)∵4的算术平方根为2,的算术平方根为2.【点睛】本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键.10、(1)整数集合:;(2)正数集合:;(3)无理数集合:【分析】根据实数分类解题,实数分为有理数与无理数,无限不循环小数和开方不能开尽的数是无理数,整数和分数统称为有理数,整数包含正整数、0、负整数, (1)根据整数的分类即可得;(2)根据正数的分类即可得;(3)根据无理数的分类即可得.【详解】解:+5是正整数,是无理数, 0是整数,-3.14是正分数,是正分数,-12是负整数,是负无理数,是正整数,(每两个1之间依次多一个0)是无理数;故(1)整数集合:(2)正数集合:(3)无理数集合:【点睛】本题考查实数的分类、有理数的分类等知识,掌握相关数的分类是解题关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共21页。试卷主要包含了若,则的值为,下列等式正确的是,下列各组数中相等的是,下列运算正确的是,下列各数是无理数的是,a为有理数,定义运算符号▽等内容,欢迎下载使用。

    初中沪教版 (五四制)第十二章 实数综合与测试达标测试:

    这是一份初中沪教版 (五四制)第十二章 实数综合与测试达标测试,共20页。试卷主要包含了下列语句正确的是,下列各式正确的是.,4的平方根是,的相反数是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题,共23页。试卷主要包含了a为有理数,定义运算符号▽,下列说法正确的是,下列实数比较大小正确的是,﹣π,﹣3,,的大小顺序是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map