数学七年级下册第十二章 实数综合与测试达标测试
展开
这是一份数学七年级下册第十二章 实数综合与测试达标测试,共21页。试卷主要包含了三个实数,2,之间的大小关系,实数在哪两个连续整数之间,在0.1010010001…,的相反数是,下列各数中,比小的数是,下列说法中正确的有等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、10的算术平方根是( )A.10 B. C. D.2、下列各式正确的是( ).A. B.C. D.3、下列说法正确的是( )A.的相反数是 B.2是4的平方根C.是无理数 D.4、三个实数,2,之间的大小关系( )A.>>2 B.>2> C.2>> D.<2<5、实数在哪两个连续整数之间( )A.3与4 B.4与5 C.5与6 D.12与136、在0.1010010001…(相邻两个1之间依次多一个0),,,中,无理数有( )A.1个 B.2个 C.3个 D.4个7、的相反数是( )A. B. C. D.8、下列各数中,比小的数是( )A. B.- C. D.9、下列说法中正确的有( )①±2都是8的立方根 ②=x③的平方根是3 ④﹣=2.A.1个 B.2个 C.3个 D.4个10、如图,数轴上的点A,B,O,C,D分别表示数,,0,1,2,则表示数的点P应落在( ).A.线段AB上 B.线段BO上 C.线段OC上 D.线段CD上第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若=2,则x=___.2、化简=_______,=_______.3、10-3的立方根是_______.4、若的平方根是±4,则a=___.5、 “平方根节”是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如:2009年的3月3日,2016年的4月4日.请写出你喜欢的一个“平方根节”(题中所举的例子除外)______年_____月_______日.三、解答题(10小题,每小题5分,共计50分)1、计算:2、已知a,b,c,d是有理数,对于任意,我们规定:.例如:.根据上述规定解决下列问题:(1)_________;(2)若,求的值;(3)已知,其中是小于10的正整数,若x是整数,求的值.3、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记.例如:,∴,则(1)判断7643和4631是否为“多多数”?请说明理由;(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”.4、解方程:(1)x2=81;(2)(x﹣1)3=27.5、(1)计算(2)计算(3)解方程(4)解方程组6、计算:.7、(1)计算:﹣32﹣(2021)0+|﹣2|﹣()﹣2×(﹣);(2)解方程:=﹣1.8、如图,数轴的原点为O,点A、B、C是数轴上的三点,点B对应的数是1,AB=6,BC=2,动点P、Q同时分别从A、C出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).(1)点A表示的数为 ,点C表示的数为 ;(2)求t为何值时,点P与点Q能够重合?(3)是否存在某一时刻t,使点O平分线段PQ且点P与点Q在原点的异侧?若存在,请求出满足条件的t值.若不存在,请说明理由.9、求下列各式中x的值.(1)(x-3)3=4(2)9(x+2)2=1610、求下列各式中的x:(1);(2). -参考答案-一、单选题1、B【分析】直接利用算术平方根的求法即可求解.【详解】解:的算术平方根是,故选:B.【点睛】本题主要考查了算术平方根,解题的关键是掌握求解的运算法则.2、D【分析】一个整数有两个平方根,这两个平方根互为相反数;如果一个数的立方等于,那么这个数叫做的立方根;据此可得结论.【详解】解:A、,原式错误,不符合题意;B、,原式错误,不符合题意;C、,原式错误,不符合题意;D、,原式正确,符合题意;故选:D.【点睛】本题考查了立方根,平方根,算数平方根,熟练掌握相关概念是解本题的关键.3、B【分析】根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.【详解】解:A. 负数没有平方根,故无意义,A错误;B.,故2是4的平方根,B正确;C.是有理数,故C错误;D. ,故D错误; 故选B.【点睛】本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.4、A【分析】,根据被开方数的大小即判断这三个数的大小关系【详解】2<<故选A【点睛】本题考查了实数大小比较,掌握无理数的估算是解题的关键.5、B【分析】估算即可得到结果.【详解】解:,,故选:B.【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.6、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;是有理数;是有理数;是无理数;∴无理数有2个,故选B.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.7、B【分析】直接根据相反数的定义(只有符号不同的两个数互为相反数)进行求解即可.【详解】解:的相反数是;故选:B.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.8、A【分析】直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.【详解】解:A. <-3,故A正确;B. ->-3,故B错误;C. >-3,故C错误;D. >-3,故D错误.故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.9、B【分析】根据平方根和立方根的定义进行判断即可.【详解】解:①2是8的立方根,-2不是8的立方根,原说法错误;②=x,正确;③,9的平方根是3,原说法错误;④﹣=2,正确;综上,正确的有②④共2个,故选:B.【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.10、B【分析】根据,得到,根据数轴与实数的关系解答.【详解】解:∵,∴,∴,∴,∴表示的点在线段BO上,故选:B.【点睛】本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键.二、填空题1、8【分析】根据立方根的性值计算即可;【详解】∵=2,∴;故答案是8.【点睛】本题主要考查了立方根的性质,准确分析计算是解题的关键.2、2 3 【分析】由题意直接根据立方根和算术平方根的性质进行化简即可得出答案.【详解】解:=2,=3.故答案为:2,3.【点睛】本题考查立方根和算术平方根的化简,熟练掌握立方根和算术平方根的性质是解题的关键.3、0.1【分析】先化简10﹣3=0.001,根据立方根的定义即可解答.【详解】解:10﹣3=0.001,0.001的立方根为0.1,故答案为:0.1.【点睛】本题考查了立方根,解题的关键是掌握会求一个数的立方根.4、256【分析】根据平方根与算术平方根的定义即可求解.【详解】解:∵的平方根是±4,∴,∴,故答案为:256.【点睛】此题主要考查实数的性质,解题的关键是熟知平方根与算术平方根的定义:如果,那么就叫做b的平方根,如果对于两个正数有,则a是b的算术平方根.5、2025 5 5 【分析】首先确定月份和日子,最后确定年份即可.(答案不唯一).【详解】解:2025年5月5日.(答案不唯一).故答案是:2025,5,5.【点睛】本题考查了平方根的应用,解题的关键是正确理解三个数字的关系.三、解答题1、【分析】分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.【详解】解:原式【点睛】本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.2、(1)-5(2)(3)k=1,4,7.【分析】(1)根据规定代入数据求解即可;(2)根据规定代入整式,利用方程的思想求解即可;(3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.(1)解:;(2)解:即:(3)解:,即:因为是小于10的正整数且x是整数,所以k=1时,x=3;k=4时,x=4;k=7时,x=5.所以k=1,4,7.【点睛】本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.3、(1)7643是“多多数”, 4631不是“多多数”,(2)5421或6734【分析】(1)根据新定义,即可判断;(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出A、F(A),根据为一个能被13整除的“多多数”,且,,列出关系式,进而求解.(1)在7643中,7-4=3,6-3=3,∴7643是“多多数”,在4631中,3-3=1,6-1=5,∴4631不是“多多数”,(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,∴A表示的数为∴∴∵∴∴∵个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,∴,解得∴x、y的范围为,且x、y为整数∵若为一个能被13整除的“多多数”,∴ 当时,,,y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是同理,当时,,,没有符合条件的y;当时,,,没有符合条件的y;当时,,,符合条件的;当时,,,没有符合条件的y;当时,,,没有符合条件的y;综上符合条件的是、当时A为5421,当时A为6734综上足条件的“多多数”为5421或6734.【点睛】本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.4、(1)x=±9;(2)x=4【分析】(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.【详解】解:(1)开方得:x=±9;(2)开立方得:x﹣1=3,解得:x=4.【点睛】本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).5、(1);(2);(3)或;(4).【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即可得.【详解】解:(1)原式;(2)原式;(3),,,或;(4),由②①得:,解得,将代入①得:,解得,故方程组的解为.【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.6、2【分析】先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.【详解】解:【点睛】本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.7、(1)-7;(2)x=9.【分析】(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)直接去分母,移项合并同类项解方程即可.【详解】解:(1)原式=﹣9﹣1+2﹣9×(﹣)=﹣9﹣1+2+1=﹣7;(2)去分母得:2x﹣3(1+x)=﹣12,去括号得:2x﹣3﹣3x=﹣12,移项得:2x﹣3x=﹣12+3,合并同类项得:﹣x=﹣9,系数化1得:x=9.【点睛】此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.8、(1)-5,3;(2)t=4;(3)存在,t=,理由见解析.【分析】(1)由点B对应的数及线段AB、BC的长,可找出点A、C对应的数;(2)根据点P、Q的出发点、速度及方向,由追击的等量关系列出含t的方程,解方程即可;(3)由题意得OP=OQ,据此列一元一次方程,解此方程即可.【详解】解:(1)1-6=-5,1+2=3即点A表示的数为 -5,点C表示的数为3,故答案为:-5,3;(2)若点P与点Q能够重合,则AP-CQ=AC,即3t-t=82t=8t=4答:当t=4时,点P与点Q能够重合.(3)存在,理由如下:若点O为PQ中点,且点P与点Q在原点的异侧,即OP=OQ5-3t=3+t4t=2t=答:当t=时,点O平分线段PQ且点P与点Q在原点的异侧.【点睛】本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键.9、(1)x=5;(2)x=-或x=.【分析】(1)把x-3可做一个整体求出其立方根,进而求出x的值;(2)把x+2可做一个整体求出其平方根,进而求出x的值.【详解】解:(1) (x−3)3=4,(x-3)3=8,x-3=2,∴x=5;(2)9(x+2)2=16,(x+2)2=,x+2=,∴x=-或x=.【点睛】本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10、(1);(2)【分析】(1)方程整理后,开方即可求出x的值;(2)方程开立方即可求出x的值.【详解】(1)等式两边同时除以2得:,两边开平方得:;(2)两边开立方得:,等式两边同时减去1得:.【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题,共19页。试卷主要包含了下列各数中,比小的数是,下列等式正确的是,下列计算正确的是.,下列说法正确的是等内容,欢迎下载使用。
这是一份数学沪教版 (五四制)第十二章 实数综合与测试课后测评,共22页。试卷主要包含了若,则的值为,下列判断,在下列四个实数中,最大的数是,4的平方根是,下列各组数中相等的是等内容,欢迎下载使用。
这是一份初中沪教版 (五四制)第十二章 实数综合与测试一课一练,共19页。试卷主要包含了下列说法正确的是,下列各数是无理数的是,在下列各数,下列各式正确的是.,可以表示,若关于x的方程等内容,欢迎下载使用。