![精品试卷沪教版(上海)七年级数学第二学期第十二章实数月考试卷(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12707188/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷沪教版(上海)七年级数学第二学期第十二章实数月考试卷(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12707188/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷沪教版(上海)七年级数学第二学期第十二章实数月考试卷(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12707188/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十二章 实数综合与测试精练
展开
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试精练,共19页。试卷主要包含了的相反数是,三个实数,2,之间的大小关系,在以下实数,下列各式中,化简结果正确的是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、0.64的平方根是( )A.0.8 B.±0.8 C.0.08 D.±0.082、下列各数是无理数的是( )A.-3 B. C.2.121121112 D.3、下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.负数没有立方根C.任何数的立方根都只有一个D.如果一个数有立方根,那么这个数也一定有平方根4、的相反数是( )A.﹣ B. C. D.35、三个实数,2,之间的大小关系( )A.>>2 B.>2> C.2>> D.<2<6、在以下实数:﹣,,π,3.1411,8,0.020020002…中,无理数有( )A.2个 B.3个 C.4个 D.5个7、实数2,0,﹣3,﹣中,最小的数是( )A.﹣3 B.﹣ C.2 D.08、点A在数轴上的位置如图所示,则点A表示的数可能是( )A. B. C. D.9、下列各式中,化简结果正确的是( )A. B. C. D.10、在实数,,,,,,,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有( )个A.2 B.3 C.4 D.5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个正数的两个平方根分别为,则_____ ,这个正数是_________.2、已知在两个连续的整数和之间,则的平方根为______.3、0.064的立方根是______.4、若一个正数的两个平方根分别为 a+3与3a+1,则a=__________.5、与最接近的整数为______.三、解答题(10小题,每小题5分,共计50分)1、若与互为相反数,且x≠0,y≠0,求的值.2、计算(1)(2)3、计算:(1);(2).4、解方程:(1)4(x﹣1)2=36;(2)8x3=27.5、计算:6、解答下列各题:(1)计算:① ②(2)分解因式:7、求下列各数的算术平方根:(1)0.64 (2)8、计算:(1).(2)+()2﹣9、已知的平方根是,的立方根是2,是的整数部分,求的算术平方根.10、计算:(1)(2) -参考答案-一、单选题1、B【分析】根据如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,由此求解即可.【详解】解:∵(±0.8)2=0.64 ,∴0.64的平方根是±0.8,故选:B.【点睛】本题主要考查了平方根的概念,解题的关键在于掌握平方根的正负两种情况.2、D【分析】根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.【详解】A、-3是整数,属于有理数.B、是分数,属于有理数.C、2.121121112是有限小数,属于有理数.D、是无限不循环小数,属于无理数.故选:D.【点睛】本题主要是考察无理数的概念,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.3、C【分析】利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义.【详解】解:∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴A选项说法不正确;∵一个负数有一个负的立方根,∴B选项说法不正确;∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴C选项说法正确;∵一个负数有一个负的立方根,但负数没有平方根,∴D选项说法不正确.综上,说法正确的是C选项,故选:C.【点睛】本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.4、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】解:的相反数是﹣,故选:A.【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.5、A【分析】,根据被开方数的大小即判断这三个数的大小关系【详解】2<<故选A【点睛】本题考查了实数大小比较,掌握无理数的估算是解题的关键.6、B【分析】根据“无限不循环的小数是无理数”可直接进行排除选项.【详解】解:∵,∴在以下实数:﹣,,π,3.1411,8,0.020020002…中,无理数有﹣,π,0.020020002…;共3个;故选B.【点睛】本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键.7、A【分析】根据实数的性质即可判断大小.【详解】解:∵﹣3<﹣<0<2故选A.【点睛】此题主要考查实数的大小比较,解题的关键是熟知实数的性质.8、A【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A表示的数在4至4.5之间,A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;B、∵9<10<16,∴3<<4,故该选项不符合题意;C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;D、∵25<30<36,∴5<<6,故该选项不符合题意;故选:A.【点睛】本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.9、D【分析】根据实数的运算法则依次对选项化简再判断即可.【详解】A、,化简结果错误,与题意不符,故错误.B、,化简结果错误,与题意不符,故错误.C、,化简结果错误,与题意不符,故错误.D、,化简结果正确,与题意相符,故正确.故选:D .【点睛】本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则.10、C【分析】利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.【详解】有理数有:,,,,一共四个.无理数有:,,,1.12112111211112…(每两 个2之间依次多一个1),一共四个.故选:C.【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.二、填空题1、 【分析】根据平方根的性质,可得 ,从而得到 ,即可求解.【详解】解:∵一个正数的两个平方根分别为,∴ ,解得: ,∴这个正数为 .故答案为: ;【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数是解题的关键.2、【分析】先判断,得到和的值,然后进行相加,再求平方根即可.【详解】解:由题意,∵,∴,∴,,∴,∴的平方根为;故答案为:.【点睛】本题考查了估算无理数的大小,以及平方根的定义,正确得出是解题关键.3、0.4【分析】根据立方根的定义直接求解即可.【详解】解:∵,∴0.064的立方根是0.4.故答案为:0.4.【点睛】本题考查了立方根,解决本题的关键是熟记立方根的定义.4、-1【分析】直接利用平方根的定义得出a+3+2a+3=0,进而求出答案.【详解】解:∵一个正数的两个平方根分别为a+3和3a+1,∴a+3+3a+1=0,解得:a=-1,故答案为:-1.【点睛】本题考查了平方根的定义.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.5、【分析】先判断再根据从而可得答案.【详解】解: 而 更接近的整数是故答案为:5【点睛】本题考查的无理数的估算,掌握“无理数的估算方法”是解本题的关键.三、解答题1、【分析】根据互为相反数的和为零,可得方程,再根据等式的性质变形.【详解】由题意可得:,即,∴,∴.【点睛】本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.2、(1)-2(2)1【分析】(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;(1)解:;(2)解:.【点睛】本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.3、(1);(2).【分析】(1)由题意利用算术平方根和立方根的性质进行化简计算即可;(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.【详解】解:(1)(2)【点睛】本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.4、(1)x=4或﹣2;(2)x=【分析】(1)先变形为(x﹣1)2=9,然后求9的平方根即可;(2)先变形为x3=,再利用立方根的定义得到答案.【详解】解:(1)方程两边除以4得,(x﹣1)2=9,∴x﹣1=±3,∴x=4或﹣2;(2)方程两边除以8得,x3=,所以x=.【点睛】本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.5、【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.6、(1)①;②;(2)【分析】(1)①原式利用算术平方根、立方根性质,乘方的意义,以及绝对值的代数意义计算即可得到结果;②根据幂的乘方与积的乘方以及同底数幂的乘法法则进行计算,再进行合并同类项合并即可;(2)原式提取公因式x,再利用完全平方公式分解即可.【详解】解:(1)① ②(2)【点睛】此题考查了实数的运算、整式的乘除运算以及提公因式法与公式法的综合运用的知识点,熟练掌运算以及相关法则、方法是解本题的关键.7、 (1) 0.8; (2) 【分析】根据算术平方根的定义求解即可.【详解】解:(1)因为0.82=0.64,所以0.64的算术平方根是0.8,即=0.8.(2)因为,所以的算术平方根是,即.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.8、(1);(2)【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.【详解】(1)原式,;(2)原式,.【点睛】此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.9、【分析】直接利用平方根以及立方根和估算无理数的大小得出a,b,c的值进而得出答案.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得:a=5,∵3a+b-9的立方根是2,∴15+b-9=8,解得:b=2,∵4<<5,c是的整数部分,∴c=4,∴a+2b+c=5+4+4=13,∴a+2b+c的算术平方根为【点睛】此题主要考查了平方根以及立方根和估算无理数的大小,正确得出a,b,c的值是解题关键.10、(1);(2)【分析】(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可.【详解】解:(1)===;(2) ===.【点睛】本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键.
相关试卷
这是一份2020-2021学年第十二章 实数综合与测试同步练习题,共18页。试卷主要包含了a为有理数,定义运算符号▽,对于两个有理数,如果a,100的算术平方根是,下列各组数中相等的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业,共18页。试卷主要包含了下列各数中,最小的数是,下列说法正确的是,实数﹣2的倒数是,4的平方根是,a为有理数,定义运算符号▽,对于两个有理数等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业,共19页。试卷主要包含了下列运算正确的是,下列说法正确的是,估计的值在,估计的值应该在.,已知a=,b=-|-|,c=等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)