终身会员
搜索
    上传资料 赚现金
    难点解析沪教版(上海)七年级数学第二学期第十二章实数定向练习试卷(无超纲带解析)
    立即下载
    加入资料篮
    难点解析沪教版(上海)七年级数学第二学期第十二章实数定向练习试卷(无超纲带解析)01
    难点解析沪教版(上海)七年级数学第二学期第十二章实数定向练习试卷(无超纲带解析)02
    难点解析沪教版(上海)七年级数学第二学期第十二章实数定向练习试卷(无超纲带解析)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共21页。试卷主要包含了下列运算正确的是,下列计算正确的是.,下列说法,如果a,已知a=,b=-|-|,c=等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数定向练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列说法不正确的是(   

    A.0的平方根是0 B.一个负数的立方根是一个负数

    C.﹣8的立方根是﹣2 D.8的算术平方根是2

    2、估计的值在(   

    A.5到6之间 B.6到7之间 C.7到8之间 D.8到9之间

    3、实数2,0,﹣3,﹣中,最小的数是(  )

    A.﹣3 B.﹣ C.2 D.0

    4、在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是(  )

    A.﹣ B.﹣3 C.|﹣3.14| D.﹣π

    5、下列运算正确的是(   

    A. B. C. D.

    6、下列计算正确的是(    ).

    A. B. C. D.

    7、下列说法:①-27的立方根是3;②36的算数平方根是;③的立方根是;④的平方根是.其中正确说法的个数是(   

    A.1 B.2 C.3 D.4

    8、如果ab分别是的整数部分和小数部分,那么的值是(   

    A.8 B. C.4 D.

    9、已知ab=-|-|,c=(-2)3,则abc的大小关系是(   

    A.bac B.bca C.cba D.acb

    10、16的平方根是(  )

    A.±8 B.8 C.4 D.±4

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、计算下列各题:

    (1)|3﹣4|﹣1=_____;

    (2)_____;

    (3)30=_____;

    (4)_____.

    2、与最接近的整数为______.

    3、xy表示两个数,规定新运算“*”如下:x*y=2x﹣3y,那么(3*5)*(﹣4)=_____.

    4、已知,则|x﹣3|+|x﹣1|=___.

    5、如果一个数的平方等于16,那么这个数是________.

    三、解答题(10小题,每小题5分,共计50分)

    1、计算:

    (1)

    (2)

    2、已知ab互为倒数,cd互为相反数,求-+(cd)2+1的值.

    3、把下列各数分别填入相应的集合里.

    ,0,,0.1010010001…(每两个1之间依次多一个0)

    (1)整数集合:{                        …}

    (2)正数集合:{                        …}

    (3)无理数集合:{                        …}

    4、阅读下列材料:

    的整数部分为3,小数部分为

    请你观察上述的规律后试解下面的问题:如果的整数部分为的小数部分为,求的值.

    5、(1)计算:﹣32﹣(2021)0+|﹣2|﹣(﹣2×(﹣);

    (2)解方程:=﹣1.

    6、直接写出结果:

    (1)____________;

    (2)____________;

    (3)的立方根=____________;

    (4)若x2=(﹣7)2,则x=____________.

    7、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.

    (1)用xcm表示图中空白部分的面积;

    (2)当x=5cm时空白部分面积为多少?

    (3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?

    8、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为abab).定义:若数mb3a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3a3=(ba)(b2+ab+a2).)

    (1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;

    (2)已知两个“复合数”的差是42,求这两个“复合数”.

    9、对于一个三位自然数m,若m的百位数字等于两个一位正整数ab的和m的个位数字等于两个一位正整数ab的差,m的十位数字等于b,则称m是“和差数”,规定.例如:723是“和差数”,因为,所以723是“和差数”,即

    (1)填空:______.

    (2)请判断311是否是“和差数”?并说明理由;

    (3)若一个三位自然数xy是整数,即n的百位数字是9,十位数字是x,个位数字是y)为“和差数”,求所有满足条件的“和差数”n

    10、计算

     

    -参考答案-

    一、单选题

    1、D

    【分析】

    直接利用算术平方根、平方根、立方根的定义分析得出答案.

    【详解】

    解:A、0的平方根是0,原说法正确,故此选项不符合题意;

    B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;

    C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;

    D、8的算术平方根是2,原说法不正确,故此选项符合题意;

    故选:D.

    【点睛】

    此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.

    2、C

    【分析】

    将根号部分平方后得44即可看出,由此可判断其在6到7之间,再利用不等式的性质进行求解判断即可.

    【详解】

    故选:C.

    【点睛】

    本题考查二次根式的估值,关键在于利用平方法找到其大概的取值范围.

    3、A

    【分析】

    根据实数的性质即可判断大小.

    【详解】

    解:∵﹣3<﹣<0<2

    故选A.

    【点睛】

    此题主要考查实数的大小比较,解题的关键是熟知实数的性质.

    4、D

    【分析】

    把数字从大到小排序,然后再找最小数.

    【详解】

    解:|﹣3.14|=3.14.|﹣3|=3,|-|=,|﹣π|=π.

    ∴﹣π<﹣3<﹣<|﹣3.14|,

    故选:D

    【点睛】

    本题考查实数大小比较,掌握比较方法是本题关键.

    5、B

    【分析】

    根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可.

    【详解】

    解:A、,计算错误,不符合题意;

    B、,计算正确,符合题意;

    C、,计算错误,不符合题意;

    D、,计算错误,不符合题意;

    故选B.

    【点睛】

    本题主要考查了立方根,算术平方根,有理数的乘方,熟知相关计算法则是解题的关键.

    6、D

    【分析】

    由负数没有算术平方根可判断A,由算术平方根不可能是负数可判断B,C,由立方根的含义可判断D,从而可得答案.

    【详解】

    解:没有意义,故A不符合题意;

    ,故B不符合题意;

    ,故C不符合题意;

    ,运算正确,故D符合题意;

    故选D

    【点睛】

    本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.

    7、A

    【分析】

    分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.

    【详解】

    解:①-27的立方根是-3,错误;

    ②36的算数平方根是6,错误;

    的立方根是,正确;

    的平方根是,错误,

    ∴正确的说法有1个,

    故选:A.

    【点睛】

    本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.

    8、B

    【分析】

    先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可

    【详解】

    ab分别是的整数部分和小数部分,则

    故选B

    【点睛】

    本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键.

    9、C

    【分析】

    本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较.

    【详解】

    解:由题意得:a===4,b==c=-8,

    cba

    故选:C.

    【点睛】

    本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键.

    10、D

    【分析】

    根据平方根可直接进行求解.

    【详解】

    解:∵(±4)2=16,

    ∴16的平方根是±4.

    故选:D.

    【点睛】

    本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.

    二、填空题

    1、0    3    1       

    【分析】

    (1)先化简绝对值,再计算减法运算即可得;

    (2)先计算有理数的乘方,再计算算术平方根即可得;

    (3)计算零指数幂即可得;

    (4)根据分式的加法运算法则即可得.

    【详解】

    解:(1)原式

    故答案为:0;

    (2)原式

    故答案为:3;

    (3)原式

    故答案为:1;

    (4)原式

    故答案为:

    【点睛】

    本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.

    2、

    【分析】

    先判断再根据从而可得答案.

    【详解】

    解:

    更接近的整数是

    故答案为:5

    【点睛】

    本题考查的无理数的估算,掌握“无理数的估算方法”是解本题的关键.

    3、-6

    【分析】

    根据找出新的运算方法,再根据新的运算方法计算即可.

    【详解】

    故答案为:

    【点睛】

    本题考查了新定义下的实数运算,解题关键是根据题目给出的式子,找出新的运算方法,再根据新的运算方法计算要求的式子.

    4、2

    【分析】

    得出x-3<0,x-1>0,再利用绝对值的代数意义去括号合并即可得到结果.

    【详解】

    解:∵,1<<2,2<<3,

    x-3<0,x-1>0,

    ∴|x﹣3|+|x-1|

    =3-x+(x-1)

    =3-x+x-1

    =2.

    故答案为:2.

    【点睛】

    本题考查了整式的加减运算,涉及的知识有:无理数的估算,绝对值的代数意义,数轴,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.

    5、

    【分析】

    根据平方根的定义进行解答即可.

    【详解】

    解:∵

    ∴如果一个数的平方等于16,那么这个数是

    故答案为:

    【点睛】

    本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)

    三、解答题

    1、(1)5;(2)

    【分析】

    (1)分别求解算术平方根与立方根,再进行加减运算即可;

    (2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.

    【详解】

    解:(1)

    (2)

    【点睛】

    本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.

    2、0

    【分析】

    互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可.

    【详解】

    解:根据题意得:ab=1,cd=0,

    则-+(cd)2+1的值=-1+0+1=0.

    【点睛】

    本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键.

    3、(1)整数集合:;(2)正数集合:;(3)无理数集合:

    【分析】

    根据实数分类解题,实数分为有理数与无理数,无限不循环小数和开方不能开尽的数是无理数,整数和分数统称为有理数,整数包含正整数、0、负整数,

    (1)根据整数的分类即可得;

    (2)根据正数的分类即可得;

    (3)根据无理数的分类即可得.

    【详解】

    解:+5是正整数,是无理数, 0是整数,-3.14是正分数,是正分数,-12是负整数,是负无理数,是正整数,(每两个1之间依次多一个0)是无理数;

    故(1)整数集合:

    (2)正数集合:

    (3)无理数集合:

    【点睛】

    本题考查实数的分类、有理数的分类等知识,掌握相关数的分类是解题关键.

    4、a+b的值为25+

    【分析】

    由9π≈28.26,可得其整数部分a=28,由27<28<64,可求得的小数部分,继而可得a+b的值.

    【详解】

    解:∵9π≈28.26,

    a=28,

    ∵27<28<64,

    ∴3<<4,

    b=-3,

    a+b=28+-3=25+

    a+b的值为25+

    【点睛】

    本题主要考查了估算无理数的大小,根据题意估算出ab的值是解答此题的关键.

    5、(1)-7;(2)x=9.

    【分析】

    (1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;

    (2)直接去分母,移项合并同类项解方程即可.

    【详解】

    解:(1)原式=﹣9﹣1+2﹣9×(﹣

    =﹣9﹣1+2+1

    =﹣7;

    (2)去分母得:2x﹣3(1+x)=﹣12,

    去括号得:2x﹣3﹣3x=﹣12,

    移项得:2x﹣3x=﹣12+3,

    合并同类项得:﹣x=﹣9,

    系数化1得:x=9.

    【点睛】

    此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.

    6、(1)8;(2)0;(3)2;(4)

    【分析】

    (1)根据算术平方根的计算法则求解即可;

    (2)根据算术平方根的计算法则求解即可;

    (3)根据立方根的求解方法求解即可;

    (4)根据求平方根的方法解方程即可.

    【详解】

    解:(1)

    故答案为:8;

    (2)

    故答案为:0;

    (3)∵

    的立方根是2,

    故答案为:2;

    (4)∵x2=(﹣7)2

    x2=49,

    x=±7.

    故答案为:±7.

    【点睛】

    本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.

    7、(1);(2);(3)13cm

    【分析】

    (1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;

    (2)将x=5代入计算可得;

    (3)根据题意列出方程求解即可.

    【详解】

    解:(1)空白部分面积为

    (2)当x=5时,空白部分面积为

    (3)根据题意得,

    解得x=13或-13(舍去),

    所以,大正方形的边长为13cm

    【点睛】

    此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.

    8、(1)12不是复合数;证明见解析;(2)98和56.

    【分析】

    (1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;

    (2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.

    【详解】

    (1)12不是复合数,

    ∵找不到两个整数ab,使a3b3=12,

    故12不是复合数,

    设“正点”P所表示的数为xx为正整数),

    ax﹣1,bx+1,

    ∴(x+1)3﹣(x﹣1)3

    =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)

    =2(3x2+1)

    =6x2+2,

    ∴6x2+2﹣2=6x2一定能被6整除;

    (2)设两个复合数为6m2+2和6n2+2(mn都是正整数),

    ∵两个“复合数”的差是42,

    ∴(6m2+2)﹣(6n2+2)=42,

    m2n2=7,

    mn都是正整数,

    ∴6m2+2=98,6n2+2=56,

    这两个“复合数”为98和56.

    【点睛】

    本题考查关于实数的新定义题型,理解新定义是解题的关键.

    9、

    (1)412

    (2)是,理由见解析

    (3)941或933或925或917

    【分析】

    (1)根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,即可得解;

    (2)根据定义即可判断311是“和差数”;

    (3)由题意得到,解得,再结合ab为正整数且,即可得解.

    (1)

    解:根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,故412.

    故答案为:412;

    (2)

    解:311是“和差数”,

    是“和差数”;

    (3)

    解:∵是整数)

    10、

    【分析】

    根据立方根,算术平方根,绝对值的计算法则进行求解即可.

    【详解】

    解:

    【点睛】

    本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共19页。试卷主要包含了在下列各数,若与互为相反数,则a,估计的值在,a为有理数,定义运算符号▽等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共21页。试卷主要包含了下列说法中错误的是,化简计算﹣的结果是,实数在哪两个连续整数之间,3的算术平方根是,下列等式正确的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共21页。试卷主要包含了下列实数比较大小正确的是,下列等式正确的是,若 ,则,有一个数值转换器,原理如下等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map