


初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习
展开这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共18页。试卷主要包含了下列各式中,化简结果正确的是,下列说法正确的是,下列各数中,比小的数是,10的算术平方根是,如果a等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,数轴上的点A,B,O,C,D分别表示数,,0,1,2,则表示数的点P应落在( ).
A.线段AB上 B.线段BO上 C.线段OC上 D.线段CD上
2、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )
A.4 B.6 C.12 D.36
3、计算2﹣1+30=( )
A. B.﹣1 C.1 D.
4、下列各式中,化简结果正确的是( )
A. B. C. D.
5、下列说法正确的是( )
A.是的平方根 B.是的算术平方根 C.2是-4的算术平方根 D.的平方根是它本身
6、下列各数中,比小的数是( )
A. B.- C. D.
7、10的算术平方根是( )
A.10 B. C. D.
8、如果a、b分别是的整数部分和小数部分,那么的值是( )
A.8 B. C.4 D.
9、一个正方体的体积是5m3,则这个正方体的棱长是( )
A.m B.m C.25m D.125m
10、100的算术平方根是( )
A.10 B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2a,则3*(-2)=_____________.
2、实数在数轴上的位置如图所示,则化简的结果为________.
3、若实数满足,则=_____________.
4、比较大小:___.(用“>”,“<”或“=”填空)
5、已知:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;….若设250=a,则用含a的式子表示250+251+252+…+2100=________.
三、解答题(10小题,每小题5分,共计50分)
1、计算:.
2、计算:(π-4)0+|-6|-+
3、求下列各式中的x:
(1);
(2).
4、求下列各式中的x:
(1);
(2).
5、已知:,求x+17的算术平方根.
6、已知a2=16,b3=27,求ab的值.
7、计算题
(1);
(2)(﹣1)2021+.
8、(1)计算:;
(2)求下列各式中的x:
①;
②(x+3)3=﹣27.
9、计算:
10、计算:
(1);
(2).
-参考答案-
一、单选题
1、B
【分析】
根据,得到,根据数轴与实数的关系解答.
【详解】
解:∵,
∴,
∴,
∴,
∴表示的点在线段BO上,
故选:B.
【点睛】
本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键.
2、D
【分析】
根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.
【详解】
解:∵一个正数a的两个不同平方根是2x-2和6-3x,
∴2x-2+6-3x=0,
解得:x=4,
∴2x-2=2×4-2=8-2=6,
∴正数a=62=36.
故选择D.
【点睛】
本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.
3、D
【分析】
利用负整数指数幂和零指数幂的意义进行化简计算即可.
【详解】
解:原式=+1=.
故选:D.
【点睛】
本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.
4、D
【分析】
根据实数的运算法则依次对选项化简再判断即可.
【详解】
A、,化简结果错误,与题意不符,故错误.
B、,化简结果错误,与题意不符,故错误.
C、,化简结果错误,与题意不符,故错误.
D、,化简结果正确,与题意相符,故正确.
故选:D .
【点睛】
本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则.
5、A
【分析】
根据平方根的定义及算术平方根的定义解答.
【详解】
解:A、是的平方根,故该项符合题意;
B、4是的算术平方根,故该项不符合题意;
C、2是4的算术平方根,故该项不符合题意;
D、1的平方根是,故该项不符合题意;
故选:A.
【点睛】
此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键.
6、A
【分析】
直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.
【详解】
解:A. <-3,故A正确;
B. ->-3,故B错误;
C. >-3,故C错误;
D. >-3,故D错误.
故选A.
【点睛】
此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.
7、B
【分析】
直接利用算术平方根的求法即可求解.
【详解】
解:的算术平方根是,
故选:B.
【点睛】
本题主要考查了算术平方根,解题的关键是掌握求解的运算法则.
8、B
【分析】
先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可
【详解】
则
a、b分别是的整数部分和小数部分,则
故选B
【点睛】
本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键.
9、B
【分析】
根据正方体的体积公式:V=a3,把数据代入公式解答.
【详解】
解:××=5(立方米),
答:这个正方体的棱长是米,
故选:B.
【点睛】
此题主要考查正方体体积公式的灵活运用,关键是熟记公式.
10、A
【分析】
根据算术平方根的概念:一个正数x的平方等于a,即,那么这个正数x就叫做a的算术平方根,即可解答.
【详解】
解:∵,,(舍去)
∴100的算术平方根是10,
故选A.
【点睛】
本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念.
二、填空题
1、18
【分析】
根据a*b=ab2+2a,可得:3*(−2)=3×(−2)2+2×3,据此求出算式的值是多少即可.
【详解】
解:∵a*b=ab2+2a,
∴3*(−2),
=3×(−2)2+2×3,
=3×4+6,
=12+6,
=18.
故答案为:18.
【点睛】
此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
2、1
【分析】
由数轴可知,则有,然后问题可求解.
【详解】
解:由数轴可知:,
∴;
故答案为1.
【点睛】
本题主要考查数轴、算术平方根及整式的加减运算,熟练掌握数轴、算术平方根及整式的加减运算是解题的关键.
3、1
【分析】
根据绝对值与二次根式的非负性求出a,b的值,故可求解.
【详解】
解:∵
∴a-2=0,b-4=0
∴a=2,b=4
∴=
故答案为:1.
【点睛】
此题主要考查代数式求值,解题的关键是熟知非负性的运用.
4、>
【分析】
先求出,然后利用作差法得到,即可得到答案.
【详解】
解:∵,
∴,
∴,
∴,
故答案为:>.
【点睛】
本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法.
5、2a2﹣a
【分析】
观察规律列式,代入所求式子即可.
【详解】
由规律可得:2+22+23+24+…+249=250﹣2,
2+22+23+24+…+249+250+251+252+…+2100=2101﹣2,
∴250+251+252+…+2100=2101﹣2﹣(250﹣2)=2×2100﹣250=2×250×250﹣250=2a2﹣a,
故答案为:2a2﹣a.
【点睛】
本题考查了已知式子值求代数式的值,这类题主要是根据已知条件求出一个式子的值,然后把要求的式子化成与已知式子相关的形式,把已知式子整体代入即可求解,找出已知式子的规律是解题的关键.
三、解答题
1、7
【分析】
根据实数的性质化简即可求解.
【详解】
解:原式
【点睛】
此题主要考查实数的混合运算,解题的关键是熟知负指数幂的运算法则.
2、9
【分析】
根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.
【详解】
解:原式
【点睛】
本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.
3、(1);(2)
【分析】
(1)方程整理后,开方即可求出x的值;
(2)方程开立方即可求出x的值.
【详解】
(1)等式两边同时除以2得:,
两边开平方得:;
(2)两边开立方得:,
等式两边同时减去1得:.
【点睛】
本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键.
4、(1);(2)
【分析】
(1)根据等式的性质和平方根的意义进行计算即可;
(2)根据等式的性质和立方根的意义进行计算即可.
【详解】
解:(1),
两边都除以4得,,
所以,;
(2),
两边都减1得,,
所以,,
解得,.
【点睛】
本题考查等式的性质、立方根、平方根的意义,解题的关键是掌握等式的性质、平方根、立方根的意义是正确解答的关键.
5、3
【分析】
首先根据,求出x的值,然后代入x+17求解算术平方根即可.
【详解】
解:∵,
∴5x+32=-8,
解得:x=-8,
∴x+17=-8+17=9,
∵9的算术平方根为3,
∴x+17的算术平方根为 3,
故答案为:3.
【点睛】
此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.
6、64或﹣64
【分析】
根据平方根、立方根、有理数的乘方解决此题.
【详解】
解:∵a2=16,b3=27,
∴a=±4,b=3.
当a=4,b=3时,ab=43=64.
当a=﹣4,b=3时,ab=(﹣4)3=﹣64.
综上:ab=64或﹣64.
【点睛】
本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.
7、(1)2+2;(2)4
【分析】
(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;
(2)原式利用乘方的意义,算术平方根定义计算即可得到结果.
【详解】
解:(1)原式=2﹣2+|﹣4|
=2﹣2+4
=2+2;
(2)原式=﹣1+5
=4.
【点睛】
本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.
8、(1);(2)①;②
【分析】
(1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;
(2)①对等式进行开平方运算,再把x的系数转化为1即可;
②对等式进行开立方运算,再移项即可.
【详解】
解:(1)
=2(﹣2)﹣3
=﹣3;
(2)①
±3
x=±6;
②(x+3)3=﹣27
x+3=﹣3
x=﹣6.
【点睛】
本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用.
9、
【分析】
先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.
【详解】
解:原式=1-8+4+
=.
【点睛】
本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.
10、(1)1;(2)
【分析】
(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;
(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.
【详解】
解:(1),
=,
=1;
(2),
=,
=,
=,
=.
【点睛】
本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键.
相关试卷
这是一份初中数学第十二章 实数综合与测试练习题,共18页。试卷主要包含了在下列各数,下列各组数中相等的是,下列各数中,比小的数是,下列各数中,最小的数是,在以下实数等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共21页。试卷主要包含了下列四个数中,最小的数是,的值等于,已知a=,b=-|-|,c=,实数在哪两个连续整数之间,下列说法等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时训练,共24页。试卷主要包含了下列各式正确的是.,下列实数比较大小正确的是,3的算术平方根为,对于两个有理数,100的算术平方根是等内容,欢迎下载使用。