初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题
展开沪教版(上海)七年级数学第二学期第十二章实数专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是( )
A.6cm B.12cm C.18cm D.24cm
2、若一个数的算术平方根与它的立方根的值相同,则这个数是( )
A.1 B.0和1 C.0 D.非负数
3、9的平方根是( )
A.±3 B.-3 C.3 D.
4、下列运算正确的是( )
A. B. C. D.
5、规定一种新运算:,如.则的值是( ).
A. B. C.6 D.8
6、对于两个有理数、,定义一种新的运算:,若,则的值为( )
A. B. C. D.
7、已知2m﹣1和5﹣m是a的平方根,a是( )
A.9 B.81 C.9或81 D.2
8、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为( )
A. B.7 C. D.1
9、下列各组数中相等的是( )
A.和3.14 B.25%和 C.和0.625 D.13.2%和1.32
10、在下列四个选项中,数值最接近的是( )
A.2 B.3 C.4 D.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若,则x+1的平方根是 _____.
2、对于有理数定义一种新运算:,如,则的值为_____________.
3、与最接近的整数为______.
4、计算:__________.
5、如果一个正数x的平方根是2a﹣3和5﹣a,那么x的值是 _____.
三、解答题(10小题,每小题5分,共计50分)
1、将下列各数填入相应的横线上:
整数:{ …}
有理数: { …}
无理数: { …}
负实数: { …}.
2、运算,满足
(1)求的值;
(2)求的值.
3、求下列各式中的值:
(1); (2).
4、(1)计算:;
(2)求式中的x:(x+4)2=81.
5、已知x-2的平方根是±2,x+2y+7的立方根是3,求3x+y的算术平方根.
6、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为.
参考小燕同学的做法,解答下列问题:
(1)写出的小数部分为________;
(2)已知与的小数部分分别为a和b,求a2+2ab+b2的值;
(3)如果,其中x是整数,0<y<1,那么=________
(4)设无理数(m为正整数)的整数部分为n,那么的小数部分为________(用含m,n的式子表示).
7、任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72第一次[]=8,第二次[]=2,第三次[]=1,这样对72只需进行3次操作变为1.
(1)对10进行1次操作后变为_______,对200进行3次作后变为_______;
(2)对实数m恰进行2次操作后变成1,则m最小可以取到_______;
(3)若正整数m进行3次操作后变为1,求m的最大值.
8、解方程,求x的值.
(1)
(2)
9、计算:
(1).
(2)+()2﹣
10、计算:.
-参考答案-
一、单选题
1、D
【分析】
由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.
【详解】
解:∵每个小立方体的体积为216cm3,
∴小立方体的棱长,
由三视图可知,最高处有四个小立方体,
∴该几何体的最大高度是4×6=24cm,
故选D.
【点睛】
本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.
2、B
【分析】
根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.
【详解】
解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,
∴一个数的算术平方根与它的立方根的值相同的是0和1,
故选B.
【点睛】
主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.
3、A
【分析】
根据平方根的定义进行判断即可.
【详解】
解:∵(±3)2=9
∴9的平方根是±3
故选:A.
【点睛】
本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.
4、B
【分析】
根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可.
【详解】
解:A、,计算错误,不符合题意;
B、,计算正确,符合题意;
C、,计算错误,不符合题意;
D、,计算错误,不符合题意;
故选B.
【点睛】
本题主要考查了立方根,算术平方根,有理数的乘方,熟知相关计算法则是解题的关键.
5、C
【分析】
根据新定义计算法则把转化为常规下运算得出,然后按有理数运算法则计算即可.
【详解】
解:∵,
∴.
故选择C.
【点睛】
本题考查新定义运算,掌握新定义运算的要点,含乘方的有理数混合运算是解题关键.
6、D
【分析】
根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.
【详解】
解: ,
,
,
解得:
故选D
【点睛】
本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.
7、C
【分析】
分两种情况讨论求解:当2m﹣1与5﹣m是a的两个不同的平方根和当2m﹣1与5﹣m是a的同一个平方根.
【详解】
解:若2m﹣1与5﹣m互为相反数,
则2m﹣1+5﹣m=0,
∴m=﹣4,
∴5﹣m=5﹣(﹣4)=9,
∴a=92=81,
若2m﹣1=5﹣m,
∴m=2,
∴5﹣m=5﹣2=3,
∴a=32=9,
故选C.
【点睛】
本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.
8、A
【分析】
定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.
【详解】
解:且当时,▽a=a,
▽(-3)=-3,
4+▽(2-5)=4-3=1>-2,
当a>-2时,▽a=-a,
▽[4+▽(2-5)]=▽1=-1,
故选:A.
【点睛】
此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
9、B
【分析】
是一个无限不循环小数,约等于3.142,3.142>3.14,即>3.14;=1÷4=0.25,把0.25的小数点向右移动两位添上百分号就是25%;即25%=;=3÷8=0.375,0.375<0.625,即<0.625;把13.2%小数点向左移动两位去掉百分号就是0.132,0.132<1.32,即13.2%<1.32.
【详解】
解:A 、≈3.142,3.142>3.14,即>3.14;
B 、=1÷4=0.25=25%=;
C 、=3÷8=0.375,0.375<0.625,即<0.625;
D 、13.2%=0.132,0.132<1.32,即13.2%<1.32.
故选:B.
【点睛】
此题主要是考查小数、分数、百分数的互化及圆周率的限值.小数、分数、百分数、无限小数(循环小数)的大小比较,通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较,这样可以省去通分的麻烦.
10、A
【分析】
根据无理数的估算先判断,进而根据,,进而可以判断,即可求得答案
【详解】
解:,,,
,即更接近2
故选A
【点睛】
本题考查了无理数的估算,掌握无理数的估算是解题的关键.
二、填空题
1、
【分析】
根据平方根的定义求得的值,进而根据平方根的意义即可求得答案,平方根:如果一个数的平方等于,那么这个数就叫的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于,那么这个数叫做的立方根.
【详解】
解:∵
∴
,的平方根是
故答案为:
【点睛】
本题主要考查了平方根和立方根的定义,解决本题的关键是要熟练根据平方根的意义和平方根的定义进行求解.
2、##
【分析】
根据新定义运算的规律,先计算,所得的结果再与(-1)进行“”运算.
【详解】
解:由题意得,,
故答案为:.
【点睛】
本题考查新定义、有理数的混合运算等知识,是重要考点,掌握相关知识是解题关键.
3、
【分析】
先判断再根据从而可得答案.
【详解】
解:
而
更接近的整数是
故答案为:5
【点睛】
本题考查的无理数的估算,掌握“无理数的估算方法”是解本题的关键.
4、3
【分析】
根据实数的运算法则即可求出答案.
【详解】
解:原式.
【点睛】
本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.
5、49
【分析】
一个正数的平方根性质是互为相反数得出2a﹣3+5﹣a=0,解方程求出a =-2,再求平方根,利用平方根求出原数即可
【详解】
解:∵一个正数x的平方根是2a﹣3和5﹣a,
∴2a﹣3+5﹣a=0,
解得a =-2,
当a =-2时2a﹣3=-2×2-3=-7,
∴x=(-7)2=49.
故答案为:49.
【点睛】
本题考查一个正数x的平方根性质,一个正数有两个平方根,它们是互为相反数,0的平方根是0,负数没有平方根,根据平方根性质列方程是解题关键.
三、解答题
1、;;,-3.030030003…,π;-3.030030003…,;
【分析】
有理数与无理数统称实数,整数与分数统称有理数,按照无理数、有理数的定义及实数的分类标准进行分类即可.
【详解】
整数:{ }
有理数:{ }
无理数:{,-3.030 030 003…,π…};
负实数:{-3.030 030 003…, …};
【点睛】
本题考查的是实数的概念与分类,掌握“实数的分类与概念”是解本题的关键.
2、
(1)-10
(2)-22
【解析】
(1)
解:
(2)
解:
【点睛】
本题考查了有理数的混合运算,利用新运算代入求值即可,关键在于理解新运算,代入时候看清楚符号是否正确.
3、(1);(2)
【分析】
(1)把原方程化为,再利用立方根的含义解方程即可;
(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.
【详解】
解:(1)
解得:
(2)
或
解得:
【点睛】
本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.
4、(1);(2)或
【分析】
(1)分别计算算术平方根、立方根、绝对值,再进行加减即可;
(2)根据平方根的意义,计算出x的值.
【详解】
解:(1)原式
;
(2)由平方根的意义得:
或
∴或.
【点睛】
本题考查了平方根意义和实数的运算.题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键.
5、5
【分析】
根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案.
【详解】
解:∵x-2的平方根是±2,
∴x-2=4,
解得:x=6,
∵x+2y+7的立方根是3,
∴6+2×y+7=27,
解得:y=7,
∴3x+y=25,
∴3x+y的算术平方根是5.
【点睛】
本题主要考查平方根以及立方根的性质、算术平方根,正确得出x,y的值是解题的关键.
6、(1);(2)1;(3);(4)
【分析】
(1)由题意易得,则有的整数部分为3,然后问题可求解;
(2)由题意易得,则有,,然后可得,然后根据完全平方公式可进行求解;
(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;
(4)根据题意可直接进行求解.
【详解】
解:(1)∵,
∴的整数部分为3,
∴的小数部分为;
故答案为;
(2)∵,
∴,,
∵与的小数部分分别为a和b,
∴,
∴;
(3)由可知,
∵,
∴的小数部分为,
∵x是整数,0<y<1,
∴,
∴;
故答案为;
(4)∵无理数(m为正整数)的整数部分为n,
∴的小数部分为,
∴的小数部分即为的小数部分加1,为;
故答案为.
【点睛】
本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.
7、(1)3;1;(2);(3)的最大值为255
【详解】
解:(1)∵,
∴,
∴,
∴对10进行1次操作后变为3;
同理可得,
∴,
同理可得,
∴,
同理可得,
∴,
∴对200进行3次作后变为1,
故答案为:3;1;
(2)设m进行第一次操作后的数为x,
∵,
∴.
∴.
∴.
∵要经过两次操作.
∴.
∴.
∴.
故答案为:.
(3)设m经过第一次操作后的数为n,经过第二次操作后的数为x,
∵,
∴.
∴.
∴.
.
∴.
∵要经过3次操作,故.
∴.
∵是整数.
∴的最大值为255.
【点睛】
本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.
8、(1)或 ;(2)x=−
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)把x−1可做一个整体求出其立方根,进而求出x的值.
【详解】
解:(1),
,
或 ;
(2)8(x−1)3=−27,
(x−1)3=−,
x−1=−,
x=−.
【点睛】
本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.
9、(1);(2)
【分析】
(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;
(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.
【详解】
(1)原式,
;
(2)原式,
.
【点睛】
此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.
10、1
【分析】
分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.
沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共21页。试卷主要包含了下列实数比较大小正确的是,下列等式正确的是,若 ,则,有一个数值转换器,原理如下等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共19页。试卷主要包含了下列各式中,化简结果正确的是,16的平方根是,若 ,则,观察下列算式等内容,欢迎下载使用。
数学七年级下册第十二章 实数综合与测试测试题: 这是一份数学七年级下册第十二章 实数综合与测试测试题,共20页。试卷主要包含了在0.1010010001…,有一个数值转换器,原理如下,下列实数比较大小正确的是,下列说法正确的是,若,则整数a的值不可能为等内容,欢迎下载使用。