沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题
展开
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共21页。试卷主要包含了下列实数比较大小正确的是,下列等式正确的是,若 ,则,有一个数值转换器,原理如下等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x的方程(k2﹣9)x2+(k﹣3)x=k+6是一元一次方程,则k的值为( )A.9 B.﹣3 C.﹣3或3 D.32、下列说法:①-27的立方根是3;②36的算数平方根是;③的立方根是;④的平方根是.其中正确说法的个数是( )A.1 B.2 C.3 D.43、下列说法不正确的是( )A.0的平方根是0 B.一个负数的立方根是一个负数C.﹣8的立方根是﹣2 D.8的算术平方根是24、下列实数比较大小正确的是( )A. B. C. D.5、在﹣3,0,2,这组数中,最小的数是( )A. B.﹣3 C.0 D.26、一个正数的两个平方根分别是2a与,则a的值为( )A.1 B.﹣1 C.2 D.﹣27、下列等式正确的是( )A. B. C. D.8、若 ,则 ( )A. B. C. D.9、有一个数值转换器,原理如下:当输入的x为64时,输出的y是( )A. B.2 C. D.10、的相反数是( )A.﹣ B. C. D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若|2y+1|=0,则xy2的值是_____.2、已知在两个连续的整数和之间,则的平方根为______.3、若是整数,则正整数的最小值是______.4、已知x,y为实数,且,则的值为______.5、的算术平方根是 _____;﹣64的立方根是 _____.三、解答题(10小题,每小题5分,共计50分)1、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为4∶3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.2、(1)计算:;(2)计算:(﹣2x2)2+x3•x﹣x5÷x;(3)先化简再求值:2(a+2)2﹣4(a+3)(a﹣3)+3(a﹣1)2,其中a=﹣1.3、有理数a,b如果满足,那么我们定义a,b为一组团结数对,记为<a,b>.例如:和,因为,所以,则称和为一组团结数对,记为<>.根据以上定义完成下列各题:(1)找出2和2,1和3,-2和这三组数中的团结数对,记为 ;(2)若<5,x>成立,则x的值为 ;(3)若<a,b>成立,b为按一定规律排列成1,-3,9,-27,81,-243,……这列数中的一个,且b与b左右两个相邻数的和是567,求a的值.4、计算下列各题:(1);(2).(3).5、求下列各式的值:(1)(2)(3)6、计算:.7、求方程中x 的值(x﹣1)2 ﹣16 = 08、(1)计算: ;(2)求的值: .9、计算题(1);(2)(﹣1)2021+.10、计算:(1)(2) -参考答案-一、单选题1、B【分析】含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.【详解】解: 关于x的方程(k2﹣9)x2+(k﹣3)x=k+6是一元一次方程, 由①得: 由②得: 所以: 故选B【点睛】本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.2、A【分析】分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.【详解】解:①-27的立方根是-3,错误;②36的算数平方根是6,错误;③的立方根是,正确;④的平方根是,错误,∴正确的说法有1个,故选:A.【点睛】本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.3、D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案.【详解】解:A、0的平方根是0,原说法正确,故此选项不符合题意;B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D、8的算术平方根是2,原说法不正确,故此选项符合题意;故选:D.【点睛】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.4、D【分析】根据有理数比较大小的法则对各选项进行比较即可.【详解】解:A、1>-4,故本选项错误;B、-1000<-0.001,故本选项错误;C、,故本选项错误;D、,故本选项正确;故选:D.【点睛】本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数; 两个负数,绝对值大的其值反而小.5、B【分析】先确定3与的大小,再确定四个数的大小顺序,由此得到答案.【详解】解:∵9>7,∴3>,∴-3<,∴-3<<0<2,故选:B.【点睛】此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键.6、D【分析】根据正数有两个平方根,且互为相反数,即可求解.【详解】解:根据题意得: ,解得: .故选:D【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.7、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).8、B【分析】先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.【详解】解:,或(舍去),,故选:B.【点睛】本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.9、C【分析】直接利用立方根以及算术平方根、无理数分析得出答案.【详解】解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是,即.故选:C.【点睛】本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.10、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】解:的相反数是﹣,故选:A.【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.二、填空题1、【分析】先根据算术平方根和绝对值的非负性求出的值,再代入计算即可得.【详解】解:,,解得,则,故答案为:.【点睛】本题考查了算术平方根和绝对值的非负性、代数式求值,熟练掌握算术平方根和绝对值的非负性是解题关键.2、【分析】先判断,得到和的值,然后进行相加,再求平方根即可.【详解】解:由题意,∵,∴,∴,,∴,∴的平方根为;故答案为:.【点睛】本题考查了估算无理数的大小,以及平方根的定义,正确得出是解题关键.3、21【分析】由,要使是整数,则n必须是21的倍数,且这个倍数必须为整数的平方,由此可求得最小的整数n.【详解】∵∴84n必须为21的整数的平方倍数,即,其中m为正整数当m=1时,n最小,且最小值为21故答案为:21【点睛】本题考查了算术平方根,算术平方根的性质,对84分解质因数、掌握可开得尽方的数的特征是关键.4、2【分析】根据偶次幂及算术平方根的非负性可得x、y的值,然后问题可求解.【详解】解:∵,∴,∴,∴;故答案为2.【点睛】本题主要考查偶次幂及算术平方根的非负性,熟练掌握偶次幂及算术平方根的非负性是解题的关键.5、 ﹣4 【分析】根据立方根、算术平方根的概念求解.【详解】解:=5,5的算术平方根是,∴的算术平方根是;﹣64的立方根是﹣4.故答案为:,﹣4.【点睛】本题考查了立方根、算术平方根的知识,掌握各知识点的概念是解答本题的关键.三、解答题1、能,桌面长宽分别为28cm和21cm【分析】本题可设它的长为4x,则它的宽为3x,根据面积公式列出方程解答即可求出x的值,再代入长宽的表达式,看是否符合条件即可.【详解】能做到,理由如下:设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588.(cm)3x=3×7=21(cm).∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm,∴能够裁出一个长方形面积为588cm2并且长宽之比为4∶3的桌面,答:桌面长宽分别为28cm和21cm.【点睛】本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点.2、(1)8﹣;(2)4x4;(3)a2+2a+47,46【分析】(1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;(2)先算乘方,再算乘除,然后合并同类项求解即可;(3)先根据整式的乘法运算法则化简,然后合并同类项,最后代入求解即可.【详解】解:(1)原式=9﹣2﹣(﹣1)=7﹣+1=8﹣;(2)原式=4x4+x4﹣x4=4x4;(3)原式=2(a2+4a+4)﹣4(a2﹣9)+3(a2﹣2a+1)=2a2+8a+8﹣4a2+36+3a2﹣6a+3=a2+2a+47,当a=﹣1时,原式=(﹣1)2+2×(﹣1)+47=1﹣2+47=46.【点睛】此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则.3、(1)<2,2>,<-2,>(2)(3)【解析】(1)和2是一组团结数,即为<>,和3不是一组团结数,和是一组团结数,即为<>,故答案为:<>,<>;(2)若<5,x>成立,则故答案为:;(3)设b左面相邻的数为x,b为-3x,b右面相邻的数为9x.由题意可得 解得 x=81 所以 b=-243 由于<a,b>成立,则a-243=-243a,解得.【点睛】本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键.4、(1)-3(2)-6x(3)4y-3xz【分析】(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.(1)解:原式;(2)解:原式;(3)解:.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=anbn运算法则,整式的除法,理解a0=1(a≠0),(a≠0),牢记法则是解题关键.5、(1)6;(2);(3)【分析】利用立方与开立方互为逆运算进行化简求值.【详解】解:(1)(2)(3).【点睛】本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.6、2【分析】根据算术平方根与立方根的定义即可完成.【详解】解:.【点睛】本题是实数的运算,考查了算术平方根的定义、立方根的定义,关键是掌握两个定义,要注意的是负数没有平方根,而任何实数都有立方根.7、或【分析】根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)【详解】解:(x﹣1)2 ﹣16 = 0或解得或【点睛】本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键.8、(1)0;(2)【分析】(1)根据立方根和平方根的性质化简,再计算加法,即可求解;(2)先将系数化为1,再利用平方根的性质,即可求解.【详解】解:(1) .原式=-2+2; (2) ∴ 解得: .【点睛】本题主要考查了立方根和平方根的性质,熟练掌握 是解题的关键.9、(1)2+2;(2)4【分析】(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;(2)原式利用乘方的意义,算术平方根定义计算即可得到结果.【详解】解:(1)原式=2﹣2+|﹣4|=2﹣2+4=2+2;(2)原式=﹣1+5=4.【点睛】本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.10、(1);(2)【分析】(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可.【详解】解:(1)===;(2) ===.【点睛】本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共19页。试卷主要包含了在下列各数,若与互为相反数,则a,估计的值在,a为有理数,定义运算符号▽等内容,欢迎下载使用。
这是一份初中数学第十二章 实数综合与测试练习题,共18页。试卷主要包含了在下列各数,下列各组数中相等的是,下列各数中,比小的数是,下列各数中,最小的数是,在以下实数等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共21页。试卷主要包含了下列说法中错误的是,化简计算﹣的结果是,实数在哪两个连续整数之间,3的算术平方根是,下列等式正确的是等内容,欢迎下载使用。