初中数学第十二章 实数综合与测试练习题
展开沪教版(上海)七年级数学第二学期第十二章实数定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列实数比较大小正确的是( )
A. B. C. D.
2、下列说法:①-27的立方根是3;②36的算数平方根是;③的立方根是;④的平方根是.其中正确说法的个数是( )
A.1 B.2 C.3 D.4
3、下列说法中错误的是( )
A.9的算术平方根是3 B.的平方根是
C.27的立方根为 D.平方根等于±1的数是1
4、在下列各数:、0.2、﹣π、、、0.101001中有理数的个数是( )
A.1 B.2 C.3 D.4
5、下列各组数中相等的是( )
A.和3.14 B.25%和 C.和0.625 D.13.2%和1.32
6、下列各数中,比小的数是( )
A. B.- C. D.
7、下列各数中,最小的数是( )
A.0 B. C. D.﹣3
8、在以下实数:﹣,,π,3.1411,8,0.020020002…中,无理数有( )
A.2个 B.3个 C.4个 D.5个
9、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )
A.4 B.6 C.12 D.36
10、在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是( )
A.﹣ B.﹣3 C.|﹣3.14| D.﹣π
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知x、y满足关系式=0,则xy的算术平方根为______.
2、的算术平方根是 _____;﹣64的立方根是 _____.
3、已知x,y是实数,且+(y-3)2=0,则xy的立方根是__________.
4、比较大小:____+1.(填“>”、“<”或“=”).
5、计算:______.
三、解答题(10小题,每小题5分,共计50分)
1、求下列各式中x的值.
(1)(x-3)3=4
(2)9(x+2)2=16
2、把下列各数分别填入相应的集合里.
,,0,,,,,,0.1010010001…(每两个1之间依次多一个0)
(1)整数集合:{ …}
(2)正数集合:{ …}
(3)无理数集合:{ …}
3、计算:.
4、计算:
(1)
(2)
5、将下列各数填入相应的横线上:
整数:{ …}
有理数: { …}
无理数: { …}
负实数: { …}.
6、(1)计算:;
(2)分解因式:.
7、计算:
8、(1)计算:(﹣)×(﹣1)2021+﹣;
(2)求x的值:(3x+2)3﹣1=.
9、求下列各式的值:
(1)
(2)
(3)
10、若与互为相反数,且x≠0,y≠0,求的值.
-参考答案-
一、单选题
1、D
【分析】
根据有理数比较大小的法则对各选项进行比较即可.
【详解】
解:A、1>-4,故本选项错误;
B、-1000<-0.001,故本选项错误;
C、,故本选项错误;
D、,故本选项正确;
故选:D.
【点睛】
本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数; 两个负数,绝对值大的其值反而小.
2、A
【分析】
分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.
【详解】
解:①-27的立方根是-3,错误;
②36的算数平方根是6,错误;
③的立方根是,正确;
④的平方根是,错误,
∴正确的说法有1个,
故选:A.
【点睛】
本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.
3、C
【分析】
根据平方根,算术平方根,立方根的性质,即可求解.
【详解】
解:A、9的算术平方根是3,故本选项正确,不符合题意;
B、因为 ,4的平方根是 ,故本选项正确,不符合题意;
C、27的立方根为3,故本选项错误,符合题意;
D、平方根等于±1的数是1,故本选项正确,不符合题意;
故选:C
【点睛】
本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.
4、D
【分析】
有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解.
【详解】
解:,,
∴在、0.2、-π、、、0.101001中,有理数有0.2、、、0.101001,共有4个.
故选:D.
【点睛】
本题考查有理数的意义,掌握有理数的意义是正确判断的前提.
5、B
【分析】
是一个无限不循环小数,约等于3.142,3.142>3.14,即>3.14;=1÷4=0.25,把0.25的小数点向右移动两位添上百分号就是25%;即25%=;=3÷8=0.375,0.375<0.625,即<0.625;把13.2%小数点向左移动两位去掉百分号就是0.132,0.132<1.32,即13.2%<1.32.
【详解】
解:A 、≈3.142,3.142>3.14,即>3.14;
B 、=1÷4=0.25=25%=;
C 、=3÷8=0.375,0.375<0.625,即<0.625;
D 、13.2%=0.132,0.132<1.32,即13.2%<1.32.
故选:B.
【点睛】
此题主要是考查小数、分数、百分数的互化及圆周率的限值.小数、分数、百分数、无限小数(循环小数)的大小比较,通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较,这样可以省去通分的麻烦.
6、A
【分析】
直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.
【详解】
解:A. <-3,故A正确;
B. ->-3,故B错误;
C. >-3,故C错误;
D. >-3,故D错误.
故选A.
【点睛】
此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.
7、C
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:,
所给的各数中,最小的数是.
故选:C.
【点睛】
本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
8、B
【分析】
根据“无限不循环的小数是无理数”可直接进行排除选项.
【详解】
解:∵,
∴在以下实数:﹣,,π,3.1411,8,0.020020002…中,无理数有﹣,π,0.020020002…;共3个;
故选B.
【点睛】
本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键.
9、D
【分析】
根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.
【详解】
解:∵一个正数a的两个不同平方根是2x-2和6-3x,
∴2x-2+6-3x=0,
解得:x=4,
∴2x-2=2×4-2=8-2=6,
∴正数a=62=36.
故选择D.
【点睛】
本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.
10、D
【分析】
把数字从大到小排序,然后再找最小数.
【详解】
解:|﹣3.14|=3.14.|﹣3|=3,|-|=,|﹣π|=π.
∴﹣π<﹣3<﹣<|﹣3.14|,
故选:D.
【点睛】
本题考查实数大小比较,掌握比较方法是本题关键.
二、填空题
1、4
【分析】
直接利用算术平方根以及偶次方的性质得出x,y的值,进而得出答案.
【详解】
解:∵,
∴x+4=0,y-2=0,
解得:x=-4,y=2,
故xy=(-4)2=16,16的算术平方根是:4.
故答案为:4.
【点睛】
本题主要考查了算术平方根以及偶次方的性质,正确得出x,y的值是解题关键.
2、 ﹣4
【分析】
根据立方根、算术平方根的概念求解.
【详解】
解:=5,5的算术平方根是,
∴的算术平方根是;
﹣64的立方根是﹣4.
故答案为:,﹣4.
【点睛】
本题考查了立方根、算术平方根的知识,掌握各知识点的概念是解答本题的关键.
3、
【分析】
根据二次根式和平方的非负性,可得 ,即可求解.
【详解】
解:根据题意得: ,
解得: ,
∴ .
故答案为:
【点睛】
本题主要考查了二次根式和平方的非负性,立方根的性质,熟练掌握二次根式和平方的非负性,立方根的性质是解题的关键.
4、<
【分析】
根据1<<2、1<<2解答即可.
【详解】
解:∵1<<2,1<<2,
∴2<+1<3,
∴<+1,
故答案为:<.
【点睛】
本题考查无理数的估算、实数的大小比较,熟练掌握无理数的估算是解答的关键.
5、-5
【分析】
由题意直接根据立方根的性质即可进行分析求值.
【详解】
解:.
故答案为:.
【点睛】
本题考查立方根求值,熟练掌握立方根的性质是解题的关键.
三、解答题
1、(1)x=5;(2)x=-或x=.
【分析】
(1)把x-3可做一个整体求出其立方根,进而求出x的值;
(2)把x+2可做一个整体求出其平方根,进而求出x的值.
【详解】
解:(1) (x−3)3=4,
(x-3)3=8,
x-3=2,
∴x=5;
(2)9(x+2)2=16,
(x+2)2=,
x+2=,
∴x=-或x=.
【点睛】
本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
2、(1)整数集合:;(2)正数集合:;(3)无理数集合:.
【分析】
根据实数分类解题,实数分为有理数与无理数,无限不循环小数和开方不能开尽的数是无理数,整数和分数统称为有理数,整数包含正整数、0、负整数,
(1)根据整数的分类即可得;
(2)根据正数的分类即可得;
(3)根据无理数的分类即可得.
【详解】
解:+5是正整数,是无理数, 0是整数,-3.14是正分数,是正分数,-12是负整数,是负无理数,是正整数,(每两个1之间依次多一个0)是无理数;
故(1)整数集合:;
(2)正数集合:;
(3)无理数集合:.
【点睛】
本题考查实数的分类、有理数的分类等知识,掌握相关数的分类是解题关键.
3、2
【分析】
根据算术平方根与立方根的定义即可完成.
【详解】
解:
.
【点睛】
本题是实数的运算,考查了算术平方根的定义、立方根的定义,关键是掌握两个定义,要注意的是负数没有平方根,而任何实数都有立方根.
4、(1)5;(2)
【分析】
(1)分别求解算术平方根与立方根,再进行加减运算即可;
(2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.
5、;;,-3.030030003…,π;-3.030030003…,;
【分析】
有理数与无理数统称实数,整数与分数统称有理数,按照无理数、有理数的定义及实数的分类标准进行分类即可.
【详解】
整数:{ }
有理数:{ }
无理数:{,-3.030 030 003…,π…};
负实数:{-3.030 030 003…, …};
【点睛】
本题考查的是实数的概念与分类,掌握“实数的分类与概念”是解本题的关键.
6、(1);(2)
【分析】
(1)先计算乘方运算,求解算术平方根,化简绝对值,再合并即可;
(2)提取公因式即可.
【详解】
解:(1)解:原式
(2)解:原式
【点睛】
本题考查的是立方根的含义,绝对值的化简,实数的运算,提公因式法分解因式,掌握“实数的运算及提公因式分解因式”是解本题的关键.
7、
【分析】
先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.
【详解】
解:原式=1-8+4+
=.
【点睛】
本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.
8、(1);(2).
【分析】
(1)先计算乘方、立方根和算术平方根,再计算加减法即可得;
(2)利用立方根解方程即可得.
【详解】
解:(1)原式
;
(2),
,
,
,
,
.
【点睛】
本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.
9、(1)6;(2);(3)
【分析】
利用立方与开立方互为逆运算进行化简求值.
【详解】
解:(1)
(2)
(3).
【点睛】
本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.
10、
【分析】
根据互为相反数的和为零,可得方程,再根据等式的性质变形.
【详解】
由题意可得:,即,
∴,
∴.
【点睛】
本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共21页。试卷主要包含了下列四个数中,最小的数是,的值等于,已知a=,b=-|-|,c=,实数在哪两个连续整数之间,下列说法等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共21页。试卷主要包含了下列说法中错误的是,化简计算﹣的结果是,实数在哪两个连续整数之间,3的算术平方根是,下列等式正确的是等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共21页。试卷主要包含了下列实数比较大小正确的是,下列等式正确的是,若 ,则,有一个数值转换器,原理如下等内容,欢迎下载使用。