终身会员
搜索
    上传资料 赚现金

    2021-2022学年度沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测评试卷(精选含详解)

    立即下载
    加入资料篮
    2021-2022学年度沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测评试卷(精选含详解)第1页
    2021-2022学年度沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测评试卷(精选含详解)第2页
    2021-2022学年度沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测评试卷(精选含详解)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题,共30页。试卷主要包含了在下列各题中,属于尺规作图的是等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在如图中,∠1和∠2不是同位角的是(  )A. B.C. D.2、如图,将军要从村庄A去村外的河边饮马,有三条路ABACAD可走,将军沿着AB路线到的河边,他这样做的道理是(   A.两点之间,线段最短B.两点之间,直线最短C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短3、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是(    A.100° B.140° C.160° D.105°4、在下列各题中,属于尺规作图的是(    A.用直尺画一工件边缘的垂线B.用直尺和三角板画平行线C.利用三角板画的角D.用圆规在已知直线上截取一条线段等于已知线段5、如图,直线相交于点平分,给出下列结论:①当时,;②的平分线;③若时,;④.其中正确的结论有(    A.4个 B.3个 C.2个 D.1个6、如图,将一张长方形纸带沿EF折叠,点CD的对应点分别为C'、D'.若∠DEF=α,用含α的式子可以将∠C'FG表示为(  )A.2α B.90°+α C.180°﹣α D.180°﹣2α7、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:已知:如图,baca求证:bc证明:作直线DF交直线abc别于点DEFab,∴∠1=∠4,又∵ac∴∠1=∠5,bc小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴bc”之间作补充,下列说法正确的是(  )A.嘉淇的推理严谨,不需要补充B.应补充∠2=∠5C.应补充∠3+∠5=180°D.应补充∠4=∠58、如图,下列选项中,不能得出直线的是( )A.∠1=∠2 B.∠4=∠5 C.∠2+∠4=180° D.∠1=∠39、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为(  )A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°10、如图,若要使平行,则绕点至少旋转的度数是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC为直线l上的点,D为直线l外一点,若,则的度数为______.2、如图,从人行横道线上的点P处过马路,下列线路中最短的是________.3、如图,把一条两边边沿互相平行的纸带折叠,若,则_______.4、如图,已知ABCD,∠1=55°,则∠2的度数为 ___.5、如图,已知ABCDBE平分∠ABCDE平分∠ADC,若∠ABC =m°,∠ADC =n°,则∠E=_________°.三、解答题(10小题,每小题5分,共计50分)1、如图,直线ABCDEF相交于点OOGCD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.2、如图,平面上两点CD在直线AB的同侧,按下列要求画图并填空. (1)画直线AC(2)画射线CD(3)画线段BD(4)过点D画垂线段DFAB,垂足为F(5)点D到直线AB的距离是线段     的长.3、按下面的要求画图,并回答问题:(1)如图①,点M从点O出发向正东方向移动4个格,再向正北方向移动3个格.画出线段OM,此时M点在点O的北偏东      °方向上(精确到1°),OM两点的距离是      cm.(2)根据以下语句,在“图②”上边的空白处画出图形.画4cm长的线段AB,点P是直纸AB外一点,过点P画直线AB的垂线PD,垂足为点D.你测得点PAB的距离是      cm.4、如图,直线交于点于点,且的度数是的4倍.(1)求的度数;(2)求的度数.5、直线相交于点平分,求的度数.6、直线AB//CD,直线EF分别交AB、CD于点MNNP平分∠MND(1)如图1,若MR平分∠EMB,则MRNP的位置关系是      (2)如图2,若MR平分∠AMN,则MRNP有怎样的位置关系?请说明理由.(3)如图3,若MR平分∠BMN,则MRNP有怎样的位置关系?请说明理由.7、如图,∠AGB=∠EHF,∠C=∠D(1)求证:BDCE(2)求证:∠A=∠F8、如果把图看成是直线ABEF被直线CD所截,那么(1)∠1与∠2是一对什么角?(2)∠3与∠4呢?∠2与∠4呢?9、如图,点O在直线AB上,过点O作射线OCOP平分∠AOCON平分∠POB.∠AOC=38°,求∠CON的度数.10、如图,OBODOC平分∠AOD,∠BOC=35°,求∠AOD和∠AOB的大小. -参考答案-一、单选题1、D【分析】同位角的定义:两条直线ab被第三条直线c所截,在截线c的同侧,被截两直线ab的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.2、D【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.3、B【分析】根据方位角的含义先求解 再利用角的和差关系可得答案.【详解】解:如图,标注字母, 射线AB的方向是北偏东70°,射线AC的方向是南偏西30°, 故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.4、D【分析】根据尺规作图的定义:用没有刻度的直尺和圆规作图,只使用圆规和直尺来解决平面几何作图,进行逐一判断即可.【详解】解:A、用直尺画一工件边缘的垂线,这里没有用到圆规,故此选项不符合题意;B、用直尺和三角板画平行线,这里没有用到圆规,故此选项不符合题意;C、利用三角板画45°的角,这里没有用到圆规,故此选项不符合题意;D、用圆规在已知直线上截取一条线段等于已知线段,是尺规作图,故此选项符合题意;故选D.【点睛】本题主要考查了尺规作图的定义,解题的关键在于熟知定义.5、B【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE=90°,∠DOF=90°,∴∠BOE=90°=∠AOE=∠DOF∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,∴∠EOF=∠BOD,∠AOF=∠DOE∴当∠AOF=50°时,∠DOE=50°;故①正确;OB平分∠DOG∴∠BOD=∠BOG∴∠BOD=∠BOG=∠EOF=∠AOC故④正确;∴∠BOD=180°-150°=30°,故③正确;的平分线,则∠DOE=∠DOG∴∠BOG+∠BOD=90°-∠EOE∴∠EOF=30°,而无法确定∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.6、D【分析】由平行线的性质得,由折叠的性质得,计算即可得出答案.【详解】∵四边形ABCD是矩形,∵长方形纸带沿EF折叠,故选:D.【点睛】本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键.7、D【分析】根据平行线的性质与判定、平行公理及推论解决此题.【详解】解:证明:作直线DF交直线abc分别于点DEFab∴∠1=∠4,又∵ac∴∠1=∠5,∴∠4=∠5.bc∴应补充∠4=∠5.故选:D【点睛】本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.8、A【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,分别进行分析即可.【详解】解:A、∠1=∠2,不能判断直线,故此选项符合题意;B、根据同位角相等,两直线平行,可判断直线,故此选项不合题意;C、根据同旁内角互补,两直线平行,可判断直线,故此选项不合题意;D、根据内错角相等,两直线平行,可判断直线,故此选项不合题意.故选:A.【点睛】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.9、D【分析】,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, , 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.10、A【分析】根据“两直线平行,内错角相等”进行计算.【详解】解:如图,l1l2∴∠AOB=∠OBC=42°,∴80°-42°=38°,l1绕点O至少旋转38度才能与l2平行.故选:A.【点睛】考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.二、填空题1、60°度【分析】由邻补角的定义,结合,可得答案.【详解】解: 故答案为:【点睛】本题考查的是邻补角的定义,掌握“互为邻补角的两个角的和为”是解本题的关键.2、PC【分析】根据点到直线的距离,垂线段最短进行求解即可.【详解】解:∵点到直线的距离,垂线段最短,∴从人行横道线上的点P处过马路,线路最短的是PC故答案为:PC【点睛】本题主要考查了点到直线的距离,解题的关键在于能够熟练掌握点到直线的距离垂线段最短.3、62°【分析】如图,根据平行线的性质可得,根据折叠的性质可得,再利用平角等于180°,据此求解即可.【详解】解:∵纸片两边平行,由折叠的性质可知,=62°.故答案为:62°.【点睛】本题主要考查平行线的性质,折叠的性质,解此题的关键在于熟练掌握其知识点.4、【分析】如图(见解析),先根据平行线的性质可得,再根据邻补角的定义即可得.【详解】解:如图,故答案为:【点睛】本题考查了平行线的性质、邻补角,熟练掌握平行线的性质是解题关键.5、【分析】EFAB,证明ABEFCD,进而得到∠BED=∠ABE+∠CDE,根据角平分线定义得到,即可求出【详解】解:如图,作EFABABCDABEFCD∴∠ABE=∠BEF,∠CDE=∠DEF∴∠BED=∠BEF+∠DEF=∠ABE+∠CDEBE平分∠ABCDE平分∠ADC故答案为:【点睛】本题考查了平行线性质,角平分线的定义,熟知角平分线的性质和平行公理的推论,根据题意添加辅助线是解题关键.三、解答题1、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析【分析】(1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG(2)求出∠EOG=∠BOG即可.【详解】解:(1)∵OGCD.∴∠GOC=∠GOD=90°,∵∠AOC=∠BOD=38°12′,∴∠BOG=90°﹣38°12′=51°48′,(2)OG是∠EOB的平分线,理由:OC是∠AOE的平分线,∴∠AOC=∠COE=∠DOF=∠BOD∵∠COE+∠EOG=∠BOG+∠BOD=90°,∴∠EOG=∠BOG即:OG平分∠BOE【点睛】本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.2、(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)DF【分析】(1)连接AC并向两端延长即可;(2)连接CD并延长CD即可;(3)连接BD即可;(4)过D作线段DFAB,垂足为F(5)根据垂线段的长度是点到直线的距离解答即可.【详解】解:(1)直线AC如图所示;(2)射线CD如图所示;(3)线段BD如图所示;(4)垂线段DF如图所示;(5)垂线段DF的长是点D到直线AB的距离,故答案为:DF【点睛】本题考查画直线、射线、线段、垂线段、点到直线的距离,熟练掌握基本作图方法,理解点到直线的距离的定义是解答的关键.3、(1)图见解析,53,5;(2)图见解析,3.【分析】(1)先根据点的移动得到点,再连接点可得线段,然后测量角的度数和线段的长度即可得;(2)先画出线段,再根据垂线的尺规作图画出垂线,然后测量的长即可得.【详解】解:(1)如图,线段即为所求.此时点在点的北偏东方向上,两点的距离是故答案为:53,5;(2)如图,线段和垂线即为所求.测得点的距离是故答案为:3.【点睛】本题考查了测量角的大小、线段的长度、作线段和垂线,熟练掌握尺规作图的方法是解题关键.4、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE =54°【分析】(1)先由的度数是的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到AOD+∠BOD=180°,由此求解即可;(2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.【详解】解:(1)∵的度数是的4倍,∴∠BOD=4∠AOD又∵∠AOD+∠BOD=180°,∴5∠AOD=180°,∴∠AOD=36°,∴∠BOD=144°;(2)∵OECD∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=54°.【点睛】本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键.5、∠3=50°,∠2=65°.【分析】根据邻补角的性质、角平分线的定义进行解答即可.【详解】∵∠FOC=90°,∠1=40°,∴∠3=180°-∠FOC-∠1 =180°-90°-40°=50°,∴∠AOD=180°-∠3=180°-50°=130°,又∵OE平分∠AOD∴∠2=AOD=65°.【点睛】本题考查的是邻补角的概念和性质、角平分线的定义,掌握邻补角之和等于180°是解题的关键.6、(1)MR//NP;(2)MR//NP,理由见解析;(3)MRNP,理由见解析【分析】(1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMBNP平分∠EBD,得出,可证∠EMR=∠ENP即可;(2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMNNP平分∠EBD,可得,得出∠RMN=∠ENP即可;(3设MRNP交于点Q,过点QQG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMNNP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥ABAB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.【详解】证明:(1)结论为MRNP.如题图1∵AB∥CD∴∠EMB=∠ENDMR平分∠EMBNP平分∠EBD∴∠EMR=∠ENPMR∥BP故答案为MR∥BP(2)结论为:MR∥NP.如题图2,∵AB∥CD∴∠AMN=∠ENDMR平分∠AMNNP平分∠EBD∴∠RMN=∠ENPMR∥NP(3)结论为:MRNP如图,设MRNP交于点Q,过点QQG∥ABAB∥CD∴∠BMN+∠END=180°,MR平分∠BMNNP平分∠EBD∴∠BMR+∠NPD=GQ∥ABAB∥CDGQ∥CD∥AB∴∠BMQ=∠GQM,∠GQN=∠PND∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,MRNP【点睛】本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.7、(1)证明见解析;(2)证明见解析.【分析】(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BDCE(2)由BDCE,可得∠D=∠2,则∠2=∠C,推出ACDF,则∠A=∠F【详解】证明:(1)∵∠AGB=∠1,∠AGB=∠EHF∴∠1=∠EHFBDCE(2)∵BDCE∴∠D=∠2,∵∠D=∠C∴∠2=∠CACDF∴∠A=∠F【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.8、(1)∠1与∠2是一对同位角;(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角【分析】同位角:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截直线之间的两角,叫做同旁内角;由以上概念进行判断即可.【详解】解:直线ABEF被直线CD所截,(1)∠1与∠2是一对同位角;(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角.【点睛】本题考查同位角、内错角以及同旁内角的识别,掌握这几种角的基本定义是解题关键.9、61.5°【分析】由题意易得∠AOP=∠COPAOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.【详解】解:∵OP平分∠AOC,∠AOC=38°,∴∠AOP=∠COPAOC×38°=19°,∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,ON平分∠POB∴∠PONBOP×161°=80.5°,∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.【点睛】本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.10、∠AOD=110°,∠AOB=20°【分析】根据OBOD,先可求出∠COD,再根据角平分线的性质求出∠AOD,利用角度的关系即可求出∠AOB【详解】解:∵OBOD∴∠BOD=90°∵∠BOC=35°,∴∠COD=90°-∠BOC=55°OC平分∠AOD∴∠AOD=2∠COD=110°∴∠AOB=∠AOD-∠BOD=110°-90°=20°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义. 

    相关试卷

    2020-2021学年第十三章 相交线 平行线综合与测试课后测评:

    这是一份2020-2021学年第十三章 相交线 平行线综合与测试课后测评,共28页。试卷主要包含了如图所示,下列说法错误的是,如图所示,直线l1∥l2,点A,如图,,交于点,,,则的度数是,下列说法等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时练习:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时练习,共29页。试卷主要包含了如图,直线AB∥CD,直线AB等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共26页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map