![2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评试题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12707432/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评试题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12707432/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评试题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12707432/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题,共31页。试卷主要包含了如图,已知,,平分,则等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,直线a、b被直线c所截,下列说法不正确的是( )
A.1与5是同位角 B.3与6是同旁内角
C.2与4是对顶角 D.5与2是内错角
2、如图所示,给出了过直线外一点P作已知直线l的平行线的方法,其依据是( ).
A.同位角相等,两直线平行. B.内错角相等,两直线平行.
C.同旁内角互补,两直线平行. D.以上都不对.
3、一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FDAB,∠B=30°,则∠ADB的度数是( )
A.95° B.105° C.115° D.125°
4、如图,∠1=∠2,∠3=25°,则∠4等于( )
A.165° B.155° C.145° D.135°
5、如图,已知,,平分,则( )
A.32° B.60° C.58° D.64°
6、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )
A.30° B.40° C.50° D.60°
7、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )
A.77° B.64° C.26° D.87°
8、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )
A.两点之间,线段最短
B.两点之间,直线最短
C.两点确定一条直线
D.直线外一点与直线上各点连接的所有线段中,垂线段最短
9、如图,,能表示点到直线(或线段)的距离的线段有( )
A.五条 B.二条 C.三条 D.四条
10、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )
A.45° B.25° C.15° D.20°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点为直线上一点,.
(1)__________________°,__________________°;
(2)的余角是__________________,的补角是___________________.
2、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为 _____.
3、如图,若,被所截,则与______________是内错角.
4、张雷同学从A地出发沿北偏东60°的方向行驶到B地,再由B地沿南偏西35°的方向行驶到C地,则∠ABC=____度.
5、将含30°角的三角板如图摆放,ABCD,若=20°,则的度数是______.
三、解答题(10小题,每小题5分,共计50分)
1、作图并计算:如图,点O在直线上.
(1)画出的平分线(不必写作法);
(2)在(1)的前提下,若,求的度数.
2、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.
将下列证明过程补充完整:
证明:∵CE平分(已知),
∴__________(角平分线的定义),
∵(已知),
∴___________(等量代换),
∴(______________).
(探究)已知:如图②,点E在AB上,且CE平分,.求证:.
(应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.
3、如图,现有以下3个论断:①ABCD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.
(1)你构造的是哪几个命题?
(2)请选择其中一个真命题加以证明.
4、已知AB∥CD,点是AB,CD之间的一点.
(1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;
以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):
解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).
∵AB∥CD(已知),
∴PE∥CD( ),
∴∠BAE=∠1,∠DCE=∠2( ),
∴∠BAE+∠DCE= + (等式的性质).
即∠AEC,∠BAE,∠DCE之间的数量关系是 .
(2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.
①若∠AEC=74°,求∠AFC的大小;
②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.
5、阅读下面的推理过程,将空白部分补充完整.
已知:如图,在△ABC中,FGCD,∠1 = ∠3.
求证:∠B + ∠BDE= 180°.
解:因为FGCD(已知),
所以∠1= .
又因为∠1 = ∠3 (已知),
所以∠2 = (等量代换).
所以BC ( ),
所以∠B + ∠BDE = 180°(___________________).
6、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.
(1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;
(2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);
(3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).
7、如图,已知ABCD,BE平分∠ABC,∠CDE = 150°,求∠C的度数.
8、如图,OB⊥OD,OC平分∠AOD,∠BOC=35°,求∠AOD和∠AOB的大小.
9、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.
(1)写出∠AOF的一个余角和一个补角.
(2)若∠BOE=60°,求∠AOD的度数.
(3)∠AOF与∠EOF相等吗?说明理由.
10、如图1,在平面直角坐标系中,,,且满足,过作轴于.
(1)求,的值;
(2)在轴上是否存在点P,使得和的面积相等,若存在,求出点P坐标,若不存在,试说明理由.
(3)若过作交轴于,且,分别平分,,如图2,图3,
①求:的度数;
②求:的度数.
-参考答案-
一、单选题
1、D
【分析】
根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.
【详解】
解:A、∠1与∠5是同位角,故本选项不符合题意;
B、∠3与∠6是同旁内角,故本选项不符合题意.
C、∠2与∠4是对顶角,故本选项不符合题意;
D、∠5与2不是内错角,故本选项符合题意.
故选:D.
【点睛】
本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
2、A
【分析】
由作图可得同位角相等,根据平行线的判定可作答.
【详解】
解:由图形得,有两个相等的同位角,所以依据为:同位角相等,两直线平行.
故选:A.
【点睛】
本题考查的是作平行线,熟知过直线外一点,作已知直线的平行线的方法和平行线的判定定理是解答此题的关键.
3、B
【分析】
由题意可知∠ADF=45°,则由平行线的性质可得∠B+∠BDF=180°,求得∠BDF=150°,从而可求∠ADB的度数.
【详解】
解:由题意得∠ADF=45°,
∵,∠B=30°,
∴∠B+∠BDF=180°,
∴∠BDF=180°﹣∠B=150°,
∴∠ADB=∠BDF﹣∠ADF=105°.
故选:B
【点睛】
本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.
4、B
【分析】
设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
【详解】
解:设∠4的补角为,如下图所示:
∠1=∠2,
,
,
.
故选:B.
【点睛】
本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
5、D
【分析】
先根据平行线的性质(两直线平行,内错角相等),可得∠ADB=∠B,再利用角平分线的性质可得:∠ADE=2∠ADB=64°,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案.
【详解】
解:∵AD∥BC,∠B=32°,
∴∠ADB=∠B=32° .
∵DB平分∠ADE,
∴∠ADE=2∠ADB=64°,
∵AD∥BC,
∴∠DEC=∠ADE=64°.
故选:D.
【点睛】
题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系.
6、D
【分析】
根据平行线的性质和垂直的定义解答即可.
【详解】
解:∵BC⊥l3交l1于点B,
∴∠ACB=90°,
∵∠2=30°,
∴∠CAB=180°−90°−30°=60°,
∵l1l2,
∴∠1=∠CAB=60°.
故选:D.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质解答.
7、A
【分析】
本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.
【详解】
解:由图可知: AD∥BC
∴∠AEG=∠BGD′=26°,
即:∠GED=154°,
由折叠可知: ∠α=∠FED,
∴∠α==77°
故选:A.
【点睛】
本题主要考察的是根据平行得性质进行角度的转化.
8、D
【分析】
根据垂线段最短即可完成.
【详解】
根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确
故选:D
【点睛】
本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.
9、A
【分析】
直接利用点到直线的距离的定义分析得出答案.
【详解】
解:线段的长是点到的距离,
线段的长是点到的距离,
线段的长是点到的距离,
线段的长是点到的距离,
线段的长是点到的距离,
故图中能表示点到直线距离的线段共有五条.
故选:A.
【点睛】
此题考查了点到直线的距离.解题的关键是掌握点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.
10、C
【分析】
直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=45°,∠ABC=30°,
∵AB∥CF,
∴∠ABD=∠EDF=45°,
∴∠DBC=45°-30°=15°.
故选:C.
【点睛】
此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.
二、填空题
1、35 55 与
【分析】
(1)由,可得,,所以,,,所以,已知的度数,即可得出与的度数;
(2)由(1)可得的余角是与,要求的补角,即要求的补角,的补角是.
【详解】
解:(1),,
,,
,,,
,
,
,;
(2)由(1)可得的余角是与,
,
的补角是,
的补角是.
故答案为:(1)35,55;(2)与,.
【点睛】
本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键.
2、
【分析】
先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.
【详解】
解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,
∴∠AOC=150°22′,
∵OD平分∠AOC,
∴,
故答案为:.
【点睛】
本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.
3、
【分析】
根据内错角的定义填空即可.
【详解】
解:与是内错角,
故答案为
【点睛】
本题主要考查内错角的定义,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
4、25
【分析】
根据题意作出图形即可判断求解.
【详解】
解:如图所示,
∵AD∥BE,∠1=60°,
∴∠ABE=∠DAB=60°,
又∵∠CBE=35°,
∴∠ABC=60°﹣35°=25°.
故答案为:25.
【点睛】
此题主要考查方位角的计算,涉及了平行线的有关性质,解题的关键是根据题意作出图形,即可进行求解.
5、50°
【分析】
三角形的外角等于不相邻的两个内角和,同位角相等可得出,从而得到的值.
【详解】
解:如图
故答案为:.
【点睛】
本题考察了三角形的外角,平行线的性质.解题的关键在于角度之间的转化和等量关系.
三、解答题
1、(1)见解析;(2)150°
【分析】
(1)根据画角平分线的方法,画出角平分线即可;
(2)先求出的度数,然后由角平分线的定义,即可求出答案.
【详解】
解:(1)如图,OD即为平分线
(2)解:∵,
∴,
,
∴;
【点睛】
本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.
2、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°
【分析】
感知:读懂每一步证明过程及证明的依据,即可完成解答;
探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;
应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.
【详解】
感知
∵CE平分(已知),
∴ECD(角平分线的定义),
∵(已知),
∴ECD(等量代换),
∴(内错角相等,两直线平行).
故答案为:ECD;ECD;内错角相等,两直线平行
探究
∵CE平分,
∴,
∵,
∴,
∵.
应用
∵BE平分∠DBC,
∴,
∵AE∥BC,
∴∠CBE=∠E,∠BAE+∠ABC=180゜,
∴∠E=∠ABE,
∵,
∴∠ABC=80゜
∴
∴
【点睛】
本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.
3、(1)由①②得③,由①③得②,由②③得①;(2)由①②得③,见解析
【分析】
(1)分别以其中2句话为条件,第三句话为结论可写出3个命题;
(2)根据平行线的判定与性质对3个命题分别进行证明,判断它们的真假.
【详解】
(1)由①②得③;由①③得②;由②③得①.
(2)证明:由①②得③;
∵ABCD;
∴∠EAB=∠C
又∵∠B=∠C;
∴∠EAB=∠B
∴CEBF;
∴∠E=∠F.
【点睛】
本题考查了命题与定理,平行线的判定与性质,掌握平行线的判定定理与性质定理是解题的关键.
4、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE;(2)①37°;②52°
【分析】
(1)结合图形利用平行线的性质填空即可;
(2)①过F作FG∥AB,由(1)得:∠AEC=∠BAE+∠DCE,根据AB∥CD,FG∥AB,CD∥FG,得出∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,根据AF平分∠BAE,CF平分∠DCE,可得∠BAF=∠BAE,∠DCF=∠DCE,根据角的和差∠AFC=∠BAF+∠DCF=∠AEC即可;
②由①得:∠AEC=2∠AFC,可求∠AFC=42°,∠AEC=82°,根据CG⊥AF,求出∠GCF=90-∠AFC=48°,根据角平分线计算得出∠GCF=3∠DCF,求出∠DCF=16°即可.
【详解】
解:(1)平行于同一条直线的两条直线平行,
两直线平行,内错角相等,
∠1,∠2,
∠AEC=∠BAE+∠DCE,
故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,
(2)①过F作FG∥AB,
由(1)得:∠AEC=∠BAE+∠DCE,
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠BAF=∠AFG,∠DCF=∠GFC,
∴∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,
∵AF平分∠BAE,CF平分∠DCE,
∴∠BAF=∠BAE,∠DCF=∠DCE,
∴∠AFC=∠BAF+∠DCF,
=∠BAE+∠DCE,
=(∠BAE+∠DCE),
=∠AEC,
=×74°,
=37°;
②由①得:∠AEC=2∠AFC,
∵∠AEC+∠AFC=126°,
∴2∠AFC+∠AFC=126°
∴3∠AFC=126°,
∴∠AFC=42°,∠AEC=84°,
∵CG⊥AF,
∴∠CGF=90°,
∴∠GCF=90-∠AFC=48°,
∵CE平分∠DCG,
∴∠GCE=∠ECD,
∵CF平分∠DCE,
∴∠DCE=2∠DCF=2∠ECF,
∴∠GCF=3∠DCF,
∴∠DCF=16°,
∴∠DCE=32°,
∴∠BAE=∠AEC﹣∠DCE=52°.
【点睛】
本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键.
5、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.
【分析】
首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.
【详解】
解:因为FGCD(已知),
所以∠1=∠2.
又因为∠1 = ∠3 (已知),
所以∠2 =∠3(等量代换).
所以(内错角相等,两直线平行),
所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).
故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.
6、(1);(2);(3)
【分析】
(1)由折叠的性质,得到,,然后由邻补角的定义,即可求出答案;
(2)由折叠的性质,先求出,然后求出∠FEG的度数即可;
(3)由折叠的性质,先求出,然后求出∠FEG的度数即可.
【详解】
解:(1)将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处,
∴,,
∴;
(2)根据题意,则
,,
∵,
∴,
∴,
∴;
(3)根据题意,
,,
∵,
∴,
∴,
∴;
【点睛】
本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,.
7、∠C的度数为120°
【分析】
首先由∠CDE=150°和平角的概念得到∠CDB=30°;然后根据两直线平行,内错角相等得到∠ABD=∠CDB=30°,进而根据角平分线的定义求出∠ABC=60°,最后根据两直线平行,同旁内角互补即可求出∠C的度数.
【详解】
解:∵∠CDE=150°,
∴∠CDB=180°-∠CDE=30°,
又∵ABCD,
∴∠ABD=∠CDB=30°,
∵BE平分∠ABC,
∴∠ABC=2∠ABD=60°,
∵ABCD,
∴∠C=180°-∠ABC=120°.
【点睛】
本题考查平行线基本性质与邻补角关系,基础知识牢固是本题解题关键.
8、∠AOD=110°,∠AOB=20°
【分析】
根据OB⊥OD,先可求出∠COD,再根据角平分线的性质求出∠AOD,利用角度的关系即可求出∠AOB.
【详解】
解:∵OB⊥OD
∴∠BOD=90°
∵∠BOC=35°,
∴∠COD=90°-∠BOC=55°
∵OC平分∠AOD,
∴∠AOD=2∠COD=110°
∴∠AOB=∠AOD-∠BOD=110°-90°=20°.
【点睛】
此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义.
9、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析
【分析】
(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;
(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;
(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.
【详解】
解:(1)∵OC⊥CD,
∴∠DOF=90°,
∴∠AOF+∠AOD=90°,
又∵∠BOC=∠AOD,
∴∠AOF+∠BOC=90°,
∵OC平分∠BOE,
∴∠COE=∠BOC,
∴∠AOF+∠COE=90°;
∴∠AOF的余角是,∠COE,∠BOC,∠AOD;
∵∠AOF+∠BOF=180°,
∴∠AOF的补角是∠BOF;
(2)∵OC平分∠BOE,∠BOE=60°,
∴∠BOC=30°,
又∵∠AOD=∠BOC,
∴∠AOD=30°;
(3)∠AOF=∠EOF,理由如下:
由(1)可得∠AOD=∠BOC=∠COE,
∵OF⊥OC,
∴∠DOF=∠COF=90°,
∴∠AOD+∠AOF=∠EOF+∠COE=90°,
∴∠AOF=∠EOF.
【点睛】
本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.
10、(1),;(2)存在,或;(3)①;②
【分析】
(1)根据非负数的和为零,则每一个数为零,列等式计算即可;
(2)设点P的坐标为(n,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;
(3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;
②作,利用平行线的性质,角的平分线的定义,计算即可.
【详解】
解:(1)∵,
∴m+4=0,n-4=0,
∴,.
(2)存在,
设点P的坐标为(n,0),则OP=|n|,
∵A(-4,0),C(4,4),
∴B(4,0),AB=4-(-4)=8,
∵,,且和的面积相等,
∴,
∴OP=AB=8,
∴|n|=8,
∴n=8或n=-8,
∴或;
(3)①∵,
∴,
又∵,
∴.
②作,如图,
∵,
∴,
∴,,
∴,
∵,分别平分,,
∴,,
∴,
即.
【点睛】
本题考查了非负数的性质,平行线的性质,互余即两个角的和为90°,角的平分线即把从角的顶点引一条射线,把这个角分成相等的两个角;坐标的意义,熟练掌握平行线的性质,是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时练习,共27页。
这是一份七年级下册第十三章 相交线 平行线综合与测试测试题,共32页。试卷主要包含了下列命题正确的是,如图所示,直线l1∥l2,点A等内容,欢迎下载使用。
这是一份2021学年第十三章 相交线 平行线综合与测试一课一练,共29页。试卷主要包含了如图,直线AB∥CD,直线AB,如图,在等内容,欢迎下载使用。