初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试习题,共27页。试卷主要包含了如图,能与构成同位角的有,如图,不能推出a∥b的条件是,下列说法中,正确的是,如图所示,下列说法错误的是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,,能表示点到直线(或线段)的距离的线段有( )A.五条 B.二条 C.三条 D.四条2、若直线a∥b,b∥c,则a∥c的依据是( ).A.平行的性质 B.等量代换C.平行于同一直线的两条直线平行. D.以上都不对3、如果同一平面内有三条直线,那么它们交点个数是( )个.A.3个 B.1或3个 C.1或2或3个 D.0或1或2或3个4、如图,能与构成同位角的有( )A.4个 B.3个 C.2个 D.1个5、如图所示,直线l1l2,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=52°,那么∠2=( )A.138° B.128° C.52° D.152°6、如图,不能推出a∥b的条件是( )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°7、用等腰直角三角板画∠AOB=45°,将三角板沿OB方向平移到如图所示的虚线M处后绕点M逆时针旋转22°,则三角板的斜边与射线OA的夹角α为( )度.A.25° B.45° C.30° D.22°8、下列说法中,正确的是( )A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B.互相垂直的两条直线不一定相交C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cmD.过一点有且只有一条直线垂直于已知直线9、如图所示,下列说法错误的是( )A.∠1和∠3是同位角 B.∠1和∠5是同位角C.∠1和∠2是同旁内角 D.∠5和∠6是内错角10、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为( )A.40° B.50° C.140° D.150°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在体育课上某同学跳远的情况如图所示,直线表示起跳线,经测量,PB=3.3米,PC=3.1米,PD=3.5米,则该同学的实际立定跳远成绩是___________米;2、如图,直线AB与CD被直线AC所截得的内错角是 ___.3、如图所示,已知∠1=52°,∠2=52°,∠3=91°,那么∠4=__.4、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AEC=_____度.5、将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于_____.三、解答题(10小题,每小题5分,共计50分)1、已知:如图,直线,直线MN交EF,PO于点A,B,直线HQ交EF,PO于点D,C,DG与OP交于点G,若,,.(1)求证:;(2)请直接写出的度数.2、如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF,∠AOD=74°,求∠COF的度数.3、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°,(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.4、如图,直线交于点,于点,且的度数是的4倍.(1)求的度数;(2)求的度数.5、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.将下列证明过程补充完整:证明:∵CE平分(已知),∴__________(角平分线的定义),∵(已知),∴___________(等量代换),∴(______________).(探究)已知:如图②,点E在AB上,且CE平分,.求证:.(应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.6、如图,,P为,之间的一点,已知,,求∠1的度数.7、如图,直线AB、CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.(1)求∠DOE的度数;(2)若∠EOF是直角,求∠COF的度数.8、完成下列证明:已知,,垂足分别为、,且,求证.证明:,(已知),( )( )( )又(已知)( )( )9、按要求画图,并回答问题: 如图,平面内有三个点A,B,C. 根据下列语句画图:(1)画直线AB;(2)射线BC;(3)延长线段AC到点D,使得; (4)通过画图、测量,点B到点D的距离约为______cm(精确到0.1);(5)通过画图、测量,点D到直线AB的最短距离约为______cm(精确到0.1).10、完成下面的证明:已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.证明:∵AB⊥AC(已知)∴∠ =90°( )∵∠1=30°,∠B=60°(已知)∴∠1+∠BAC+∠B= ( )即∠ +∠B=180°∴AD∥BC( ) -参考答案-一、单选题1、A【分析】直接利用点到直线的距离的定义分析得出答案.【详解】解:线段的长是点到的距离,线段的长是点到的距离,线段的长是点到的距离,线段的长是点到的距离,线段的长是点到的距离,故图中能表示点到直线距离的线段共有五条.故选:A.【点睛】此题考查了点到直线的距离.解题的关键是掌握点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.2、C【分析】根据平行公理的推论进行判断即可.【详解】解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,故选:C.【点睛】本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.3、D【分析】根据三条直线是否有平行线分类讨论即可.【详解】解:当三条直线平行时,交点个数为0;当三条直线相交于1点时,交点个数为1;当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;当三条直线互相不平行时,且交点不重合时,交点个数为3;所以,它们的交点个数有4种情形.故选:D.【点睛】本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论.4、B【分析】根据同位角的定义判断即可;【详解】如图,与能构成同位角的有:∠1,∠2,∠3.故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.5、B【分析】根据两直线平行同位角相等,得出∠1=∠3=52°.再由∠2与∠3是邻补角,得∠2=180°﹣∠3=128°.【详解】解:如图.∵l1//l2,∴∠1=∠3=52°.∵∠2与∠3是邻补角,∴∠2=180°﹣∠3=180°﹣52°=128°.故选:B.【点睛】本题主要考查了平行线的性质、邻补角的定义,熟练掌握平行线的性质、邻补角的定义是解决本题的关键.6、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:、和是一对内错角,当时,可判断,故不符合题意;、和是邻补角,当时,不能判定,故符合题意;、和是一对同位角,当时,可判断,故不合题意;、和是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.7、D【分析】由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.【详解】解:由平移的性质知,AO∥SM,故∠WMS=∠OWM=22°;故选D.【点睛】本题利用了两直线平行,内错角相等,及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8、C【分析】根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C.【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.9、B【分析】根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.【详解】解:A、∠1和∠3是同位角,故此选项不符合题意; B、∠1和∠5不存在直接联系,故此选项符合题意; C、∠1和∠2是同旁内角,故此选项不符合题意; D、∠1和∠6是内错角,故此选项不符合题意;故选B.【点睛】本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键.10、C【分析】由于拐弯前、后的两条路平行,用平行线的性质求解即可.【详解】解:∵拐弯前、后的两条路平行,∴(两直线平行,内错角相等).故选:C.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.二、填空题1、3.1【分析】根据点到直线,垂线段最短,即可求解.【详解】解:根据题意得:该同学的实际立定跳远成绩是PC=3.1米.故答案为:3.1【点睛】本题主要考查了点与直线的位置关系,熟练掌握点到直线,垂线段最短是解题的关键.2、∠2与∠4【分析】根据内错角的特点即可求解.【详解】由图可得直线AB与CD被直线AC所截得的内错角是∠2与∠4故答案为:∠2与∠4.【点睛】此题主要考查内错角的识别,解题的关键是熟知内错角的特点.3、【分析】根据同位角相等判定两直线平行,再利用平行线性质可得∠3=∠5=91°,再利用平角性质计算即可.【详解】解:如图,∵∠1=∠2=52°,∴a∥b,∴∠3=∠5=91°,∵∠5+∠4=180°,∴∠4=180°﹣∠5=89°.故答案为:89°.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.4、70【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,再根据平行线性质求出∠AEC的度数即可.【详解】解:∵ABCD, ∴∠C+∠CAB=180°, ∵∠C=40°, ∴∠CAB=180°-40°=140°, ∵AE平分∠CAB, ∴∠EAB=70°, ∵ABCD, ∴∠AEC=∠EAB=70°, 故答案为70.【点睛】本题考查角平分线的定义和平行线的性质,解题的关键是熟练掌握两条平行线被第三条直线所截,同旁内角互补.5、50°【分析】根据平行线的性质计算即可;【详解】解:如图所示,由折叠可得,∠3=∠1=65°,∴∠CEG=130°,∵AB∥CD,∴∠2=180°﹣∠CEG=180°﹣130°=50°.故答案为:50°.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.三、解答题1、(1)见解析;(2)【分析】(1)根据可得,,再根据内错角相等两直线平行即可得证;(2)根据两直线平行的性质可得,从而可得,再由即可求解.【详解】解:(1)∵,∴,∵,∴,∴;(2)∵,,∴,,∵,∴,∴.【点睛】本题考查了平行线的判定及性质,解题的关键是掌握平行线的判定及性质,利用数形结合的思想进行求解.2、53°【分析】首先根据对顶角相等可得∠BOC=74°,再根据角平分线的性质可得∠COE=∠COB=37°,再利用余角定义可计算出∠COF的度数.【详解】解:∵∠AOD=74°,∴∠BOC=74°,∵OE是∠COB的平分线,∴∠COE=∠COB=37°,∵OE⊥OF,∴∠EOF=90°,∴∠COF=90°-37°=53°.【点睛】本题考查了角平分线的性质、余角、对顶角的性质,关键是掌握对顶角相等,角平分线把角分成相等的两部分.3、(1)平行,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.【分析】(1)先根据CE平分∠ACD,AE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;(2)如图,过E作EF∥AB,由AB//CD可得EF∥AB∥CD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)如图,过点C作CM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据AB∥CD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC.【详解】(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE,∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180°,∴AB∥CD(2)∠BAE+∠MCD=90°;理由如下:如图,过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠AEC=∠AEF+∠FEC=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD=∠MCD,∴∠BAE+∠MCD=90°.(3)如图,过点C作CM//PQ,∴∠PQC=∠MCN,∠QPC=∠PCM,∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠PCQ+∠PCM+∠MCN=180°,∴∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC.【点睛】本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.4、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE =54°【分析】(1)先由的度数是的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到∠AOD+∠BOD=180°,由此求解即可;(2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.【详解】解:(1)∵的度数是的4倍,∴∠BOD=4∠AOD,又∵∠AOD+∠BOD=180°,∴5∠AOD=180°,∴∠AOD=36°,∴∠BOD=144°;(2)∵OE⊥CD,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=54°.【点睛】本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键.5、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.【详解】感知∵CE平分(已知),∴ECD(角平分线的定义),∵(已知),∴ECD(等量代换),∴(内错角相等,两直线平行).故答案为:ECD;ECD;内错角相等,两直线平行探究∵CE平分,∴,∵,∴,∵.应用∵BE平分∠DBC,∴,∵AE∥BC,∴∠CBE=∠E,∠BAE+∠ABC=180゜,∴∠E=∠ABE,∵,∴∠ABC=80゜∴∴【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.6、30°【分析】首先过点P作射线,根据两直线平行,内错角相等,即可求得答案.【详解】过点P作射线,如图①.∵,,∴.∴.∵,∴.又∵.∴. 【点睛】此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.7、(1);(2)【分析】(1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;(2)先求解 再利用平角的定义可得答案.【详解】解:(1) ∠AOC:∠AOD=3:7, OE平分∠BOD, (2) 【点睛】本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.8、见详解【分析】根据垂直的定义及平行线的性质与判定可直接进行求解.【详解】证明:,(已知),(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(等量代换)(内错角相等,两直线平行).【点睛】本题主要考查垂直的定义及平行线的性质与判定,熟练掌握垂直的定义及平行线的性质与判定是解题的关键.9、(1)见解析;(2)见解析;(3)见解析;(4)3.5;(5)1.4【分析】(1)根据直线定义即可画直线AB;(2)根据射线定义即可画直线BC;(3)根据线段定义即可连接AC并延长到点D,使得CD=AC;(4)通过画图、测量,即可得点B到点D的距离.(5)通过画图、测量,即可得点D到直线AB的距离.【详解】解:(1)如图,直线AB即为所求;(2)如图,射线BC即为所求;(3)如图,线段CD即为所画;(4)通过画图、测量,点B到点D的距离约为3.5cm,故答案为:3.5;(5)通过画图、测量,点D到点AB的距离DE约为1.4cm故答案为:1.4【点睛】本题考查了基本作图、直线是向两方无限延伸的,射线是向一方无限延伸的;线段有两个端点、两点间的距离,点到直线间的距离,解决本题的关键是准确作图.10、见解析【分析】先根据垂直的定义可得,再根据角的和差可得,从而可得,然后根据平行线的判定即可得证.【详解】证明:∵(已知),∴(垂直的定义),∵,(已知),∴(等量关系),即,∴(同旁内角互补,两直线平行).【点睛】本题考查了垂直、平行线的判定等知识点,熟练掌握平行线的判定是解题关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题,共29页。试卷主要包含了下列语句中,如图,已知,,平分,则等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步训练题,共29页。试卷主要包含了如图木条a,下列命题正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共28页。试卷主要包含了如图所示,直线l1∥l2,点A等内容,欢迎下载使用。