年终活动
搜索
    上传资料 赚现金

    2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数专题训练练习题(无超纲)

    立即下载
    加入资料篮
    2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数专题训练练习题(无超纲)第1页
    2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数专题训练练习题(无超纲)第2页
    2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数专题训练练习题(无超纲)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共22页。试卷主要包含了有一个数值转换器,原理如下,9的平方根是,下列判断中,你认为正确的是,64的立方根为.等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若互为相反数,则ab的值为(    A. B. C. D.2、关于的叙述,错误的是(  )A.是无理数B.面积为8的正方形边长是C.的立方根是2D.在数轴上可以找到表示的点3、在0.1010010001…(相邻两个1之间依次多一个0),中,无理数有(    A.1个 B.2个 C.3个 D.4个4、有一个数值转换器,原理如下:当输入的x为64时,输出的y是(    A. B.2 C. D.5、9的平方根是(  )A.±3 B.-3 C.3 D.6、下列判断中,你认为正确的是(  )A.0的倒数是0 B.是分数 C.3<<4 D.的值是±37、64的立方根为(    ).A.2 B.4 C.8 D.-28、在实数,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有(    ).A.2个 B.3个 C.4个 D.5个9、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为(    A.4 B.6 C.12 D.3610、4的平方根是(  )A.±2 B.﹣2 C.2 D.4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若ab为实数,且,则ab的值______.2、若|2y+1|=0,则xy2的值是_____.3、已知abab为两个连续的自然数,则a+b=_____.4、按一定规律排列的一列数:3,32,3﹣1,33,3-4,37,3﹣11,318,…,若abc表示这列数中的连续三个数,猜想abc满足的关系式是______.5、的算术平方根是________,的平方根是__________,-8的立方根是_________,三、解答题(10小题,每小题5分,共计50分)1、解方程,求x的值.(1)                     (2)2、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为abab).定义:若数mb3a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3a3=(ba)(b2+ab+a2).)(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.3、计算:4、(1)计算:(2)求的值:5、计算:(π-4)0+|-6|-+6、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.(1)用xcm表示图中空白部分的面积;(2)当x=5cm时空白部分面积为多少?(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?7、计算:(1)(2)+(28、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记例如:,∴,则(1)判断7643和4631是否为“多多数”?请说明理由;(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”9、计算:10、已知abcd是有理数,对于任意,我们规定:例如:根据上述规定解决下列问题:(1)_________;(2)若,求的值;(3)已知,其中是小于10的正整数,若x是整数,求的值. -参考答案-一、单选题1、D【分析】首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.【详解】解:∵互为相反数,+=0,得:得:,解得:代入①得:,解得:故选:D.【点睛】此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于ab的方程组并求解.2、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.【详解】解:A是无理数,该说法正确,故本选项不符合题意;B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;C、8的立方根是2,该说法错误,故本选项符合题意;D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.3、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;是有理数;是有理数;是无理数;∴无理数有2个,故选B.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.4、C【分析】直接利用立方根以及算术平方根、无理数分析得出答案.【详解】解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是故选:C.【点睛】本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.5、A【分析】根据平方根的定义进行判断即可.【详解】解:∵(±3)2=9∴9的平方根是±3故选:A【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.6、C【分析】根据倒数的概念即可判断A选项,根据分数的概念即可判断B选项,根据无理数的估算方法即可判断C选项,根据算术平方根的概念即可判断D选项.【详解】解:A、0不能作分母,所以0没有倒数,故本选项错误;B、属于无理数,故本选项错误;C、因为 9<15<16,所以 3<<4,故本选项正确;D、的值是3,故本选项错误.故选:C.【点睛】此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.7、B【分析】根据立方根的定义进行计算即可.【详解】解:∵43=64,∴实数64的立方根是故选:B.【点睛】本题考查立方根,理解立方根的定义是正确解答的关键.8、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9、D【分析】根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.【详解】解:∵一个正数a的两个不同平方根是2x-2和6-3x∴2x-2+6-3x=0,解得:x=4,∴2x-2=2×4-2=8-2=6,∴正数a=62=36.故选择D.【点睛】本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.10、A【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根.【详解】解:∵∴4的平方根是故选:A.【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.二、填空题1、3【分析】根据平方的非负性及算术平方根的非负性求出ab的值,代入计算即可.【详解】解:∵=3,故答案为:3.【点睛】此题考查了平方的非负性及算术平方根的非负性,以及实数的乘方运算,正确掌握平方的非负性及算术平方根的非负性是解题的关键.2、【分析】先根据算术平方根和绝对值的非负性求出的值,再代入计算即可得.【详解】解:解得故答案为:【点睛】本题考查了算术平方根和绝对值的非负性、代数式求值,熟练掌握算术平方根和绝对值的非负性是解题关键.3、9【分析】利用已知得出ab的值,进而求出a+b的平方根.【详解】解:∵ab是两个连续的自然数, a=4,b=5,的值为9.故答案为:9.【点睛】此题主要考查了估算无理数的大小,正确得出ab的值是解题关键.4、bc=a【分析】首先判断出这列数中,3的指数各项依次为 1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,前两数相除等于第三个数,可得这列数中的连续三个数,满足a÷bc,据此解答即可.【详解】∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,,…,abc满足的关系式是a÷bc,即bc=a故答案为:bc=a【点睛】此题考查了实数的规律问题,同底数幂的除法运算,负整数指数幂等知识,解题的关键是正确分析出题目中指数之间的规律.5、5    ±3    -2    【分析】根据算术平方根、平方根、立方根的定义即可求解.【详解】解:=25算术平方根是5=9,的平方根是±3-8的立方根是-2故答案为:5;±3;-2.【点睛】此题主要考查算术平方根、平方根、立方根,解题的关键是熟知:算术平方根的定义:如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个数的立方等于a,那么这个数叫做a的立方根.三、解答题1、(1) ;(2)x=−【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x−1可做一个整体求出其立方根,进而求出x的值.【详解】解:(1)(2)8(x−1)3=−27,x−1)3=−x−1=−x=−【点睛】本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.2、(1)12不是复合数;证明见解析;(2)98和56.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.【详解】(1)12不是复合数,∵找不到两个整数ab,使a3b3=12,故12不是复合数,设“正点”P所表示的数为xx为正整数),ax﹣1,bx+1,∴(x+1)3﹣(x﹣1)3 =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除;(2)设两个复合数为6m2+2和6n2+2(mn都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,m2n2=7,mn都是正整数,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.【点睛】本题考查关于实数的新定义题型,理解新定义是解题的关键.3、2【分析】根据算术平方根与立方根的定义即可完成.【详解】解:【点睛】本题是实数的运算,考查了算术平方根的定义、立方根的定义,关键是掌握两个定义,要注意的是负数没有平方根,而任何实数都有立方根.4、(1)0;(2)【分析】(1)根据立方根和平方根的性质化简,再计算加法,即可求解;(2)先将系数化为1,再利用平方根的性质,即可求解.【详解】解:(1)原式=-2+2   (2) 解得: 【点睛】本题主要考查了立方根和平方根的性质,熟练掌握 是解题的关键.5、9【分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.6、(1);(2);(3)13cm【分析】(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;(2)将x=5代入计算可得;(3)根据题意列出方程求解即可.【详解】解:(1)空白部分面积为(2)当x=5时,空白部分面积为(3)根据题意得,解得x=13或-13(舍去),所以,大正方形的边长为13cm【点睛】此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.7、(1);(2)【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.【详解】(1)原式(2)原式【点睛】此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.8、(1)7643是“多多数”, 4631不是“多多数”,(2)5421或6734【分析】(1)根据新定义,即可判断;(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出AFA),根据为一个能被13整除的“多多数”,且,,列出关系式,进而求解.(1)在7643中,7-4=3,6-3=3,∴7643是“多多数”,在4631中,3-3=1,6-1=5,∴4631不是“多多数”,(2)A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,A表示的数为∵个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,,解得xy的范围为,且xy为整数∵若为一个能被13整除的“多多数”,时,y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是同理,当时,,没有符合条件的y时,,没有符合条件的y时,,符合条件的时,,没有符合条件的y时,,没有符合条件的y综上符合条件的是A为5421,A为6734综上足条件的“多多数”为5421或6734.【点睛】本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.9、【分析】分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.【详解】解:原式【点睛】本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.10、(1)-5(2)(3)k=1,4,7.【分析】(1)根据规定代入数据求解即可;(2)根据规定代入整式,利用方程的思想求解即可;(3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.(1)解:(2)解:即:(3)解:即:因为是小于10的正整数且x是整数,所以k=1时,x=3;k=4时,x=4;k=7时,x=5.所以k=1,4,7.【点睛】本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共19页。试卷主要包含了4的平方根是,下列各式中,化简结果正确的是,下列说法正确的是,下列判断中,你认为正确的是,下列四个数中,最小的数是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共22页。试卷主要包含了下列实数比较大小正确的是,下列说法正确的是,下列说法中错误的是,实数﹣2的倒数是,估计的值在,若 ,则等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题:

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题,共17页。试卷主要包含了下列运算正确的是,如果a,的相反数是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map