搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测试试题(无超纲)

    2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测试试题(无超纲)第1页
    2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测试试题(无超纲)第2页
    2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测试试题(无超纲)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题,共28页。试卷主要包含了下列说法中正确的有个,如图,下列条件中能判断直线的是,如图,能与构成同位角的有等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线ab,直线ABAC,若∠1=52°,则∠2的度数是(  )A.38° B.42° C.48° D.52°2、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点CD分别落在点C′,D′处,DEBF交于点G.已知∠BGD′=26°,则∠α的度数是(    A.77° B.64° C.26° D.87°3、在下列各题中,属于尺规作图的是(    A.用直尺画一工件边缘的垂线B.用直尺和三角板画平行线C.利用三角板画的角D.用圆规在已知直线上截取一条线段等于已知线段4、下列说法中正确的有(  )个①两条直线被第三条直线所截,同位角相等;②同一平面内,不相交的两条线段一定平行;③过一点有且只有一条直线垂直于已知直线;④经过直线外一点有且只有一条直线与这条直线平行;⑤从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.A.1 B.2 C.3 D.45、如图,下列条件中能判断直线的是( )A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠56、如所示各图中,∠1与∠2是对顶角的是(    A. B. C. D.7、如图,直线abRtABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为(    A.30° B.40° C.50° D.60°8、如图所示,ABCD,若∠2是∠1的2倍,则∠2等于(  )A.60° B.90° C.120° D.150°9、如图,能与构成同位角的有(   A.4个 B.3个 C.2个 D.1个10、如图,直线AB经过点O,射线OA是北偏东40°方向,则射线OB的方位角是(    A.南偏西50° B.南偏西40° C.北偏西50° D.北偏西40°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知,线段AB垂直于线段CD,垂足为OOE平分∠AOC,∠BOF=28°,则∠EOF=____°.2、已知三条不同的直线abc在同一平面内,下列四个命题:①如果abac,那么bc    ②如果baca,那么bc③如果baca,那么bc; ④如果baca,那么bc其中正确的是__.(填写序号)3、如图,过直线AB上一点O作射线OCOD ,并且OD是∠ AOC的平分线,∠BOC=29°18′,  则∠BOD的度数为___________.4、如图所示,已知∠1=52°,∠2=52°,∠3=91°,那么∠4=__.5、在同一平面内的三条直线,它们的交点个数可能是________.三、解答题(10小题,每小题5分,共计50分)1、如图,ABDG,∠1+∠2=180°.(1)试说明:ADEF(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.2、请把下列证明过程及理由补充完整(填在横线上):3、如图,现有以下3个论断:①ABCD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.(1)你构造的是哪几个命题?(2)请选择其中一个真命题加以证明.4、如图,CDABD,点FBC上任意一点,FEABE,且∠1=∠2,∠B=60°.试求∠ADG的度数.5、在三角形ABC中,DFBC上一点,HEAC上,(1)如图1,求证:(2)如图2,若,请直接写出图中与互余的角,不需要证明.6、如图,直线ABCD相交于点OOC平分∠BOEOFCD,垂足为点O(1)写出∠AOF的一个余角和一个补角.(2)若∠BOE=60°,求∠AOD的度数.(3)∠AOF与∠EOF相等吗?说明理由.7、如图,直线ABCDEF相交于点OOGCD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.8、如图,在由相同小正方形组成的网格中,点ABCO都在网格的格点上,∠AOB=90°,射线OC在∠AOB的内部.(1)用无刻度的直尺作图:①过点AADOC②在∠AOB的外部,作∠AOE,使∠AOE=∠BOC(2)在(1)的条件下,探究∠AOC与∠BOE之间的数量关系,并说明理由.9、完成下列填空:已知:如图,CA平分求证:证明:∵(已知)________( )(已知)________(  又∵CA平分(已知)________(  (已知)_____________=30°(  10、如图,直线CDEF相交于点O,将一直角三角尺AOB的直角顶点与点O重合.(1)如图1,若,试说明(2)如图2,若OB平分.将三角尺以每秒5°的速度绕点O顺时针旋转,设运动时间为t秒.,当t为何值时,直线OE平分②当,三角尺AOB旋转到三角POQAB分别对应PQ)的位置,若OM平分,求的值. -参考答案-一、单选题1、A【分析】利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.【详解】解:∵ABAC,∠1=52°,∴∠B=90°﹣∠1=90°﹣52°=38°ab∴∠2=∠B=38°.故选:A.【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.2、A【分析】本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.【详解】解:由图可知: AD∥BC∴∠AEG=∠BGD′=26°,即:∠GED=154°,由折叠可知: ∠α=∠FED∴∠α==77°故选:A.【点睛】本题主要考察的是根据平行得性质进行角度的转化.3、D【分析】根据尺规作图的定义:用没有刻度的直尺和圆规作图,只使用圆规和直尺来解决平面几何作图,进行逐一判断即可.【详解】解:A、用直尺画一工件边缘的垂线,这里没有用到圆规,故此选项不符合题意;B、用直尺和三角板画平行线,这里没有用到圆规,故此选项不符合题意;C、利用三角板画45°的角,这里没有用到圆规,故此选项不符合题意;D、用圆规在已知直线上截取一条线段等于已知线段,是尺规作图,故此选项符合题意;故选D.【点睛】本题主要考查了尺规作图的定义,解题的关键在于熟知定义.4、A【分析】根据平行线的性质,垂线的性质,平行公理,点到直线的距离的定义逐项分析判断即可.【详解】①互相平行的两条直线被第三条直线所截,同位角相等,故①不正确;②同一平面内,不相交的两条直线一定平行,故②不正确;③同一平面内,过一点有且只有一条直线垂直于已知直线,故③不正确;④经过直线外一点有且只有一条直线与这条直线平行,故④正确⑤从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故⑤不正确.故正确的有④,共1个,故选A.【点睛】本题考查了平行线的性质,平行公理,垂线的性质,点到直线的距离,掌握相关定理性质是解题的关键.5、C【分析】利用平行线的判定方法判断即可得到结果.【详解】解:A、根据∠1=∠2不能判断直线l1l2,故本选项不符合题意.B、根据∠1=∠5不能判断直线l1l2,故本选项不符合题意.C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1l2,故本选项符合题意.D、根据∠3=∠5不能判断直线l1l2,故本选项不符合题意.故选:C.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.6、B【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.【详解】解:A.∠1与∠2没有公共顶点,不是对顶角;B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.故选:B.【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.7、B【分析】由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.【详解】解:如图所示:∵∠1=50°,∠ACB=90°,∴∠BCD=180°﹣∠1﹣∠BCD=40°,ab∴∠2=∠BCD=40°.故选:B【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.8、C【分析】先由ABCD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵ABCD∴∠1=∠CEF又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.9、B【分析】根据同位角的定义判断即可;【详解】如图,与能构成同位角的有:∠1,∠2,∠3.故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.10、B【分析】由对顶角可知∠1=40°,故可知射线OB的方位角;【详解】解:由对顶角可知,∠1=40°所以射线OB的方位角是南偏西40°故答案为B【点睛】本题考查了方向角.解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.二、填空题1、107【分析】分两种情况:①射线OF在∠BOC内部;②射线OF在∠BOD内部.【详解】解:∵ABCD,垂足为O∴∠AOC=∠COB=90°,OE平分∠AOC∴∠AOE=∠COE=AOC=45°.分两种情况:①如图1,射线OF在∠BOC内部时,∵∠AOE=45°,∠BOF=28°,∴∠EOF=180°-∠AOE-∠BOF=107°;②如图2,射线OF在∠BOD内部时,∵∠COE=45°,∠COB=90°,∠BOF=28°,∴∠EOF=∠COE+∠COB+∠BOF=163°.故答案为107或163.【点睛】本题考查了垂直的定义,角平分线定义以及角的计算,进行分类讨论是解题的关键.2、①②④【分析】根据两直线的位置关系一一判断即可.【详解】解:在同一个平面内,①如果abac,那么b⊥c,正确;②如果baca,那么bc,正确;③如果baca,那么bc,错误;④如果baca,那么bc,正确;故答案为:①②④.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.3、【分析】先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.【详解】解:的平分线,故答案为:【点睛】本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.4、【分析】根据同位角相等判定两直线平行,再利用平行线性质可得∠3=∠5=91°,再利用平角性质计算即可.【详解】解:如图,∵∠1=∠2=52°,a∥b∴∠3=∠5=91°,∵∠5+∠4=180°,∴∠4=180°﹣∠5=89°.故答案为:89°.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.5、0或1或2或3个【分析】分类讨论画出图形,①当三条直线平行时,没有交点;②三条直线交于一点时,有一个交点;③两条平行线与一条直线相交时,有两个交点;④三条直线两两相交时有三个交点吗,即可得出答案.【详解】解:如图,由图可知:同一平面内的三条直线,其交点个数为:0个;1个;2个;3个.故答案是:0个或1个或2个或3个【点睛】本题主要考查了相交线和平行线.正确画出图形,即可得到正确结果.三、解答题1、(1)见解析;(2)∠B=38°.【分析】(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由ABDG,即可得到∠B=∠CDG=38°.【详解】(1)∵AB∥DG∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°.AD∥EF . (2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,DG是∠ADC的平分线,∴∠CDG=∠1=38°,AB∥DG∴∠B=∠CDG=38°.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.2、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行【分析】根据ADBC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.【详解】证明:∵ADBC(已知),∴∠3=∠CAD(两直线平行,内错角相等).∵∠3=∠4(已知),∴∠4=∠CAD(等量代换).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质).即∠BAF=∠CAD∴∠4=∠BAF.(等量代换).ABCD(同位角相等,两直线平行).【点睛】本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.3、(1)由①②得③,由①③得②,由②③得①;(2)由①②得③,见解析【分析】(1)分别以其中2句话为条件,第三句话为结论可写出3个命题;(2)根据平行线的判定与性质对3个命题分别进行证明,判断它们的真假.【详解】(1)由①②得③;由①③得②;由②③得①.(2)证明:由①②得③;ABCD∴∠EAB=∠C又∵∠B=∠C∴∠EAB=∠BCEBF∴∠E=∠F【点睛】本题考查了命题与定理,平行线的判定与性质,掌握平行线的判定定理与性质定理是解题的关键.4、60°【分析】CDABFEAB,则,则∠2=∠4,从而证得,得∠B=∠ADG,则答案可解.【详解】解:CDABDFEABE∴∠2=∠4,又∵∠1=∠2,∴∠1=∠4,【点睛】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.5、(1)证明见解析;(2)【分析】(1)由垂直于同一条直线的两直线平行可推出.再根据平行线的性质可得出,即得出.最后根据平行线的判定条件,即可判断(2)由可推出,即得出.由,可推出,即得出.由,可直接推出.由此即可判断哪些角与互余.(1)证明:∵(2)互余的角有:证明:∵  ,即综上,可知与互余的角有:【点睛】本题考查平行线的判定和性质,余角的概念.熟练掌握平行线的判定条件和性质是解答本题的关键.6、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)AOF=∠EOF,理由见解析【分析】(1)由OCCD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;(3)由(1)可得∠AOD=∠BOC=∠COE,再由OFOC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF【详解】解:(1)∵OCCD∴∠DOF=90°,∴∠AOF+∠AOD=90°,又∵∠BOC=∠AOD∴∠AOF+∠BOC=90°,OC平分∠BOE∴∠COE=∠BOC∴∠AOF+∠COE=90°;∴∠AOF的余角是,∠COE,∠BOC,∠AOD∵∠AOF+∠BOF=180°,∴∠AOF的补角是∠BOF(2)∵OC平分∠BOE,∠BOE=60°,∴∠BOC=30°,又∵∠AOD=∠BOC∴∠AOD=30°;(3)∠AOF=∠EOF,理由如下:由(1)可得∠AOD=∠BOC=∠COEOFOC∴∠DOF=∠COF=90°,∴∠AOD+∠AOF=∠EOF+∠COE=90°,∴∠AOF=∠EOF【点睛】本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.7、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析【分析】(1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG(2)求出∠EOG=∠BOG即可.【详解】解:(1)∵OGCD.∴∠GOC=∠GOD=90°,∵∠AOC=∠BOD=38°12′,∴∠BOG=90°﹣38°12′=51°48′,(2)OG是∠EOB的平分线,理由:OC是∠AOE的平分线,∴∠AOC=∠COE=∠DOF=∠BOD∵∠COE+∠EOG=∠BOG+∠BOD=90°,∴∠EOG=∠BOG即:OG平分∠BOE【点睛】本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.8、(1)①见解析;②见解析;(2)∠AOC+∠BOE=180°,理由见解析【分析】(1)①取格点D,然后作直线AD即可;②取格点E,然后作射线OE即可.(2)根据角的和差定义证明即可.【详解】解:(1)①如图,直线AD即为所求作.②∠AOE即为所求作.(2)∠AOC+∠BOE=180°.理由:∵∠AOC=90°﹣∠BOC,∠BOE=90°+∠AOE,∠BOC=∠AOE∴∠AOC+∠BOE=90°﹣∠AOE+90°+∠AOE=180°.【点睛】本题考查了格点作图以及角的大小关系,明确题意、熟练掌握上述基本知识是解题关键.9、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等【分析】ABCD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.【详解】证明:∵ABCD,(已知)∴∠B+∠BCD=180°,(两直线平行同旁内角互补)∵∠B=120°(已知),∴∠BCD=60°.CA平分∠BCD(已知),∴∠2=30°,(角平分线定义).ABCD(已知),∴∠1=∠2=30°.(两直线平行内错角相等).故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.10、(1)见解析;(2)①;②【分析】(1)根据垂直的性质即可求解;(2)①分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;②根据,可知OP内部,根据题意作图,分别表示出,故可求解.【详解】解:(1)∵(2)①∵OB平分情况1:当OE平分时,则旋转之后OB旋转的角度为情况2:当OF平分时,同理可得,OB旋转的角度为综上所述,②∵OP内部,如图所示,由题意知,,∵OM平分【点睛】此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系. 

    相关试卷

    初中数学第十三章 相交线 平行线综合与测试巩固练习:

    这是一份初中数学第十三章 相交线 平行线综合与测试巩固练习,共29页。试卷主要包含了下列说法中正确的是,如图,直线b等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题,共28页。试卷主要包含了下列说法中正确的个数是,下列关于画图的语句正确的是.等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试巩固练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试巩固练习,共30页。试卷主要包含了如图,直线AB∥CD,直线AB,下列命题正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map