![2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测试试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12707647/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测试试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12707647/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测试试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12707647/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第十三章 相交线 平行线综合与测试同步测试题
展开
这是一份2021学年第十三章 相交线 平行线综合与测试同步测试题,共28页。试卷主要包含了下列说法等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'2、如图,不能推出a∥b的条件是( )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°3、∠A两边分别垂直于∠B的两边,∠A与∠B的关系是( )A.相等 B.互补 C.相等或互补 D.不能确定4、如图,直线AB经过点O,射线OA是北偏东40°方向,则射线OB的方位角是( )A.南偏西50° B.南偏西40° C.北偏西50° D.北偏西40°5、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )A.70° B.80° C.100° D.110°6、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )A.30° B.45° C.60° D.75°7、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )A.139° B.141° C.131° D.129°8、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )A.80° B.90° C.100° D.110°9、下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是( )A.① B.②和③ C.④ D.①和④10、一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FDAB,∠B=30°,则∠ADB的度数是( )A.95° B.105° C.115° D.125°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,若,被所截,则与______________是内错角.2、规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.3、如图,点E是BA延长线上一点,下列条件中:①∠1=∠3;②∠5=∠D;③∠2=∠4;④∠B+∠BCD=180°,能判定ABCD的有___.(填序号)4、如图,直线AB和直线CD相交于点O,且∠AOC=2∠BOC,则∠AOD的度数为____________.5、在体育课上某同学跳远的情况如图所示,直线表示起跳线,经测量,PB=3.3米,PC=3.1米,PD=3.5米,则该同学的实际立定跳远成绩是___________米;三、解答题(10小题,每小题5分,共计50分)1、如图,107国道上有一个出口M,想在附近公路旁建一个加油站,欲使通道最短,应沿怎样的线路施工?2、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.(1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;(2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);(3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).3、如图,平面上有三个点A、B、C.(1)根据下列语句按要求画图.①画射线AB,用圆规在线段AB的延长线上截取BD=AB(保留作图痕迹);②连接CA、CD、CB;③过点C画CE⊥AD,垂足为点E;④过点D画DF∥AC,交CB的延长线于点F.(2)①在线段CA、CE、CD中,线段_________最短,依据是_________.②用刻度尺或圆规检验DF与AC的大小关系为_________.4、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.5、如图,AE=AF,以AE为直径作⊙O交EF点D,过点D作BC⊥AF,交AE的延长线于点B.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AE=5,AC=4,求BE的长.6、如图,,P为,之间的一点,已知,,求∠1的度数.7、如图,OB⊥OD,OC平分∠AOD,∠BOC=35°,求∠AOD和∠AOB的大小.8、如图所示,点、分别在、上,、均与相交,,,求证:.9、阅读并完成下列推理过程,在括号内填写理由.已知:如图,点,分别在线段、上,,平分,平分交于点、.求证:.证明:平分(已知), .平分(已知), (角平分线的定义),(已知), . . .10、如图,AB与EF交于点B,CD与EF交于点D,根据图形,请补全下面这道题的解答过程.(1)∵∠1=∠2(已知)∴ CD( )∴∠ABD+∠CDB = ( )(2)∵∠BAC =65°,∠ACD=115°,( 已知 ) ∴∠BAC+∠ACD=180° (等式性质)∴ABCD ( )(3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°(已知)∴∠ABD=∠CDF=90°( 垂直的定义)∴ (同位角相等,两直线平行)又∵∠BAC=55°,(已知)∴∠ACD = ( ) -参考答案-一、单选题1、D【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.2、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:、和是一对内错角,当时,可判断,故不符合题意;、和是邻补角,当时,不能判定,故符合题意;、和是一对同位角,当时,可判断,故不合题意;、和是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.3、C【分析】分别画出∠A两边分别垂直于∠B的两边,然后利用同角的余角相等进行求解即可.【详解】解:如图所示:BE⊥AE,BC⊥AC,∴∠BCF=∠AEF=90°,∴∠A+∠AFE=90°,∠B+∠BFC=90°,∴∠A=∠B如图所示:BD⊥AD,BC⊥AC,∴∠ADE=∠BCE=90°,∴∠A+∠BEC=90°,∠CBE+∠BEC=90°,∴∠A=∠CBE,∵∠CBE+∠DBC=180°,∴∠A+∠DBC=180°,综上所述,∠A与∠B的关系是相等或互补,故选C.【点睛】本题主要考查了垂直的定义,同角的余角相等,以及等角的补角之间的关系,解题的关键在于能够根据题意画出图形进行求解.4、B【分析】由对顶角可知∠1=40°,故可知射线OB的方位角;【详解】解:由对顶角可知,∠1=40°所以射线OB的方位角是南偏西40°故答案为B【点睛】本题考查了方向角.解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.5、B【分析】先证明DEBC,根据平行线的性质求解.【详解】解:因为∠B=∠ADE=70°所以DEBC,所以∠DEC+∠C=180°,所以∠C=80°.故选:B.【点睛】此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.6、D【分析】由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.【详解】解:∵AC平分∠BAD,∠BAD=90°,∴∠BAC=45°∵BD∥AC,∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,∵∠CBD=∠ABD+∠ABC=45°+60°=105°,∴∠1=75°,故选D.【点睛】本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.7、A【分析】如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..【详解】解:如图,∵AECF,∴∠A=∠CGB=41°,∵ABCD,∴∠C=180°-∠CGB=139°.故选:A【点睛】本题考查了平行线的性质,熟知平行线的性质是解题关键.8、D【分析】直接利用对顶角以及平行线的性质分析得出答案.【详解】解:∵∠1=70°,∴∠1=∠3=70°,∵ABDC,∴∠2+∠3=180°,∴∠2=180°−70°=110°.故答案为:D.【点睛】此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.9、A【分析】利用平行线的性质逐一判断即可.【详解】①是平行线的性质,故符合题意;②是平行线的判定,故不符合题意;③是平行线的判定,故不符合题意;④是平行线的判定,故不符合题意;故选:A.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定的区别是关键.10、B【分析】由题意可知∠ADF=45°,则由平行线的性质可得∠B+∠BDF=180°,求得∠BDF=150°,从而可求∠ADB的度数.【详解】解:由题意得∠ADF=45°,∵,∠B=30°,∴∠B+∠BDF=180°,∴∠BDF=180°﹣∠B=150°,∴∠ADB=∠BDF﹣∠ADF=105°.故选:B【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.二、填空题1、【分析】根据内错角的定义填空即可.【详解】解:与是内错角,故答案为【点睛】本题主要考查内错角的定义,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.2、a1∥a100;【分析】从已知两直线的位置关系,运用平行线的性质,观察分析得几条特殊直线与a1的位置关系为a1∥a4,a1∥a5;a1⊥a2,a1 ⊥a3;且a1与an的位置关系是4为周期进行循环,下角标的余数为0或1时与a1平行,下角标的余数为2或3时与a1垂直,计算100=4×25,余数为0判定两直线的位置关系为a1∥a100.【详解】解:在同一平面内有直线两直线的位置,关系是相交或平行,如图所示:∵a1⊥a2,a2∥a3,∴a1 ⊥a3,又∵a3⊥a4,∴a1∥a4,又∵a4∥as,∴a1∥a5,又∵a5⊥a6,∴a1⊥a6,又∵a6∥a7,∴a1⊥a7,…从以上的规律可知:a1与an的位置关系是4为周期进行循环,若下角标的余数为0或1时与a1平行;若下角标的余数为2或3时与a1垂直.∵100=4×25,∴a1∥a100,故答案为:a1∥a100.【点睛】本题综合考查了平行线的性质,同一平面内图形的变化规律,倍数和余数的运用等相关知识点,重点是掌握平行线的性质,难点是掌握由特殊到一般图形变化规律在几何中的运用.3、②③④【分析】根据平行线的判定方法分别判定得出答案.【详解】解:①中,∵∠1=∠3,∴AD//BC(内错角相等,两直线平行),故此选项不符合题意;②中,∵∠5=∠D,∴AB//CD(内错角角相等,两直线平行),故此选项符合题意;③中,∵∠2=∠4,∴AB//CD(内错角角相等,两直线平行)),故此选项符合题意;④中,∠B+∠BCD=180°,∴AB//CD (同旁内角互补,两直线平行),故此选项符合题意;故答案为:②③④.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.4、【分析】根据,可得,再根据对顶角相等即可求出的度数.【详解】解:∵,∴∴∵∴故答案为:【点睛】本题主要考查了邻补角、对顶角的相关知识,熟练运用邻补角、对顶角的相关知识是解答此题的关键.5、3.1【分析】根据点到直线,垂线段最短,即可求解.【详解】解:根据题意得:该同学的实际立定跳远成绩是PC=3.1米.故答案为:3.1【点睛】本题主要考查了点与直线的位置关系,熟练掌握点到直线,垂线段最短是解题的关键.三、解答题1、作图见解析【分析】根据垂线段最短作图即可;【详解】解:如图,过点M作MN⊥,垂足为N,欲使通道最短,应沿线路MN施工.【点睛】本题主要考查了垂线段最短的应用,尺规作图,准确分析作图是解题的关键.2、(1);(2);(3)【分析】(1)由折叠的性质,得到,,然后由邻补角的定义,即可求出答案;(2)由折叠的性质,先求出,然后求出∠FEG的度数即可;(3)由折叠的性质,先求出,然后求出∠FEG的度数即可.【详解】解:(1)将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处,∴,,∴;(2)根据题意,则,,∵,∴,∴,∴;(3)根据题意,,,∵,∴,∴,∴;【点睛】本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,.3、(1)见解析;(2)①;垂线段最短;②相等【分析】(1)根据题意作图即可;(2)根据垂线段最短以及圆规进行检验即可.【详解】(1)如图所示,即为所求;(2)①根据垂线段最短可知,在线段CA、CE、CD中,线段CE最短;②用圆规检验DF=AC.【点睛】本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键.4、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.【分析】三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.【详解】(1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.(2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.(3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.以第一个命题为例证明如下:∵AB∥DE,∴∠B=∠DOC.∵BC∥EF,∴∠DOC=∠E,∴∠B=∠E.【点睛】本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.5、(1)BC与⊙O相切,见解析;(2).【分析】(1)连接OD,根据等腰三角形的性质得到∠OED=∠ODE,∠OED=∠F,求得∠ODE=∠F,根据平行线的判定得到OD∥AC,根据平行线的性质得到∠ODB=∠ACB,推出OD⊥BC,根据切线的判定定理即可得到结论;(2)根据平行线分线段成比例定理得到,于是得到结论.【详解】解:(1)BC与⊙O相切,理由:连接OD,∵OE=OD,∴∠OED=∠ODE,∵AE=AF,∴∠OED=∠F,∴∠ODE=∠F,∴OD∥AC,∴∠ODB=∠ACB,∵DC⊥AF,∴∠ACB=90°,∴∠ODB=90°,∴OD⊥BC,∵OD是⊙O的半径,∴BC与⊙O相切;(2)∵OD∥AC,∴,∵AE=5,AC=4,即,∴BE=.【点睛】本题考查等腰三角形的性质、切线的判定与性质、平行线的判定与性质等知识,是重要考点,掌握相关知识是解题关键.6、30°【分析】首先过点P作射线,根据两直线平行,内错角相等,即可求得答案.【详解】过点P作射线,如图①.∵,,∴.∴.∵,∴.又∵.∴. 【点睛】此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.7、∠AOD=110°,∠AOB=20°【分析】根据OB⊥OD,先可求出∠COD,再根据角平分线的性质求出∠AOD,利用角度的关系即可求出∠AOB.【详解】解:∵OB⊥OD∴∠BOD=90°∵∠BOC=35°,∴∠COD=90°-∠BOC=55°∵OC平分∠AOD,∴∠AOD=2∠COD=110°∴∠AOB=∠AOD-∠BOD=110°-90°=20°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义.8、证明见解析【分析】由,证明,再证,最后根据对顶角相等,可得答案.【详解】证明:∵,∴,∴,又∵,∴,∴,∴,∵,∴.【点睛】本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.9、角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【分析】根据角平分线的定义和平行线的性质与判定即可证明.【详解】证明:平分(已知),(角平分线的定义).平分(已知),(角平分线的定义),(已知),(两直线平行,同位角相等).(等量代换).(同位角相等,两直线平行).故答案为:角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【点睛】本题主要考查了角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.10、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125°;两直线平行,同旁内角互补.【分析】(1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;(2)由题意直接依据同旁内角互补,两直线平行进行分析即可;(3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.【详解】解:(1)∵∠1=∠2 (已知)∴AB∥CD(内错角相等,两直线平行)∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)∵∠BAC =65°,∠ACD=115°,(已知) ∴∠BAC+∠ACD=180° (等式性质 )∴AB∥CD (同旁内角互补,两直线平行)故答案为:同旁内角互补,两直线平行;(3)∵CD⊥AB于D,EF⊥AB于F ,∠BAC=55°,(已知)∴∠ABD=∠CDF=90°(垂直的定义)∴AB ∥CD(同位角相等,两直线平行)又∵∠BAC=55°,(已知)∴∠ACD = 125°.(两直线平行,同旁内角互补)故答案为:AB;CD;125°;两直线平行,同旁内角互补.【点睛】本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.
相关试卷
这是一份数学第十三章 相交线 平行线综合与测试习题,共28页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。
这是一份数学沪教版 (五四制)第十三章 相交线 平行线综合与测试同步练习题,共26页。试卷主要包含了如图所示,直线l1∥l2,点A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共26页。试卷主要包含了在下列各题中,属于尺规作图的是,如图,下列条件中能判断直线的是等内容,欢迎下载使用。