搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(含答案及详细解析)

    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(含答案及详细解析)第1页
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(含答案及详细解析)第2页
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(含答案及详细解析)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共31页。试卷主要包含了直线等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法:①和为180°且有一条公共边的两个角是邻补角;②过一点有且只有一条直线与已知直线垂直;③同位角相等;④经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有(    A.0个 B.1个 C.2个 D.3个2、在如图中,∠1和∠2不是同位角的是(  )A. B.C. D.3、如图,将一张长方形纸带沿EF折叠,点CD的对应点分别为C'、D'.若∠DEF=α,用含α的式子可以将∠C'FG表示为(  )A.2α B.90°+α C.180°﹣α D.180°﹣2α4、如图,若要使平行,则绕点至少旋转的度数是(    A. B. C. D.5、下列各图中,∠1与∠2是对顶角的是(      A.  B. C.  D.6、直线如图所示.若∠1=∠2,则下列结论错误的是( )A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠57、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点CD分别落在点C′,D′处,DEBF交于点G.已知∠BGD′=26°,则∠α的度数是(    A.77° B.64° C.26° D.87°8、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于(    A.40° B.36° C.44° D.100°9、如图所示,直线l1l2,∠1和∠2分别为直线l3与直线l1l2相交所成角.如果∠1=52°,那么∠2=(  )A.138° B.128° C.52° D.152°10、如图,下列条件中,不能判断的是(    A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线ABCD相交于点O, 过O点作EFAB,若∠1=35º,则∠2=_____ º.2、如图,直线ab被直线c所截,ab,∠1=60°,则∠2的度数为________.3、两个角的两边互相平行,且角比角的2倍少30°,则这个角是____________度.4、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC证明:∵(已知),(垂直的定义).________(已知),∴________(依据1:________),(依据2:________).5、如图,在四边形ABCD中,ABCDADBC,点FBC的延长线上,CE平分∠DCFAD的延长线于点E,已知∠E=35°,则∠A=___.三、解答题(10小题,每小题5分,共计50分)1、完成下列填空:已知:如图,CA平分求证:证明:∵(已知)________( )(已知)________(  又∵CA平分(已知)________(  (已知)_____________=30°(  2、如图,AEAF,以AE为直径作⊙OEFD,过点DBCAF,交AE的延长线于点B(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AE=5,AC=4,求BE的长.3、如图,平面上两点CD在直线AB的同侧,按下列要求画图并填空. (1)画直线AC(2)画射线CD(3)画线段BD(4)过点D画垂线段DFAB,垂足为F(5)点D到直线AB的距离是线段     的长.4、如图,OAOB于点O,∠AOD:∠BOD=7:2,点DOE在同一条直线上,OC平分∠BOE,求∠COD的度数.5、如图,直线ABCDEF相交于点OOGCD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.6、作图并计算:如图,点O在直线上.(1)画出的平分线(不必写作法);(2)在(1)的前提下,若,求的度数.7、已知:如图①,AB∥CD,点F在直线ABCD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.(1)如图①,若∠BEF=130°,则∠FGC     度;(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点EEM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC     度.解:如图②,过点EEM∥FG,交CD于点MAB∥CD(已知)∴∠BEM=∠EMC     又∵EM∥FG∴∠FGC=∠EMC     EFG+∠FEM=180°(      即∠FGC=(      )(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(      又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC     即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.8、如图,EFBC,∠1=∠C,∠2+∠3=180°,试说明∠ADC=90°.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠1=∠C,(已知)GD     .(                          ∴∠2=∠DAC.(                          ∵∠2+∠3=180°,(已知)∴∠DAC+∠3=180°.(等量代换)ADEF.(                          ∴∠ADC=∠     .(                          EFBC,(已知)∴∠EFC=90°.(                          ∴∠ADC=90°.(等量代换)9、如图,直线ABCD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.(1)求∠DOE的度数;(2)若∠EOF是直角,求∠COF的度数.10、如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为 _____米.(填具体数值) -参考答案-一、单选题1、B【分析】根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.【详解】解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;③如图直线ab被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;其中正确的有④一共1个.故选择B.【点睛】本题考查基本概念的理解,掌握基本概念是解题关键.2、D【分析】同位角的定义:两条直线ab被第三条直线c所截,在截线c的同侧,被截两直线ab的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3、D【分析】由平行线的性质得,由折叠的性质得,计算即可得出答案.【详解】∵四边形ABCD是矩形,∵长方形纸带沿EF折叠,故选:D.【点睛】本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键.4、A【分析】根据“两直线平行,内错角相等”进行计算.【详解】解:如图,l1l2∴∠AOB=∠OBC=42°,∴80°-42°=38°,l1绕点O至少旋转38度才能与l2平行.故选:A.【点睛】考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.5、C【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.故选C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.6、D【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,ABCD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.7、A【分析】本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.【详解】解:由图可知: AD∥BC∴∠AEG=∠BGD′=26°,即:∠GED=154°,由折叠可知: ∠α=∠FED∴∠α==77°故选:A.【点睛】本题主要考察的是根据平行得性质进行角度的转化.8、A【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,PQMN∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.9、B【分析】根据两直线平行同位角相等,得出∠1=∠3=52°.再由∠2与∠3是邻补角,得∠2=180°﹣∠3=128°.【详解】解:如图.l1//l2∴∠1=∠3=52°.∵∠2与∠3是邻补角,∴∠2=180°﹣∠3=180°﹣52°=128°.故选:B.【点睛】本题主要考查了平行线的性质、邻补角的定义,熟练掌握平行线的性质、邻补角的定义是解决本题的关键.10、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:,内错角相等,,故本选项错误,不符合题意;,同位角相等,,故本选项错误,不符合题意;,同旁内角互补,,故本选项错误,不符合题意;,它们不是内错角或同位角,的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.二、填空题1、55【分析】由已知可得,,进而根据,∠1=35º,即可求得【详解】EFAB,∠1=35º,故答案为:55【点睛】本题考查了两条相交线所成的角,垂直的定义,平角的定义,掌握垂直的定义是解题的关键.2、120°【分析】要求∠2的度数,只需根据平行线的性质求得其对顶角的度数.【详解】解:∵ab,∠1=60°,∴∠3=120°,∴∠2=∠3=120°.故答案为:120°【点睛】考查了平行线的性质,本题应用的知识点为:两直线平行,同旁内角互补的性质及对顶角相等的性质.3、【分析】为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.【详解】解:设的度数为,则的度数为如图1,互相平行,可得:∠2=∠3,同理:∠1=∠3,∴∠2=∠1,∴当两角相等时:解得: 如图2,互相平行,可得:∠2+∠3=互相平行,得∠1=∠3,∴∠2+∠1=∴当两角互补时:解得:故填:【点睛】本题考查平行线的性质和方程的应用,分类讨论思想是关键.4、        同角的余角相等    内错角相等,两直线平行    【分析】根据垂直的定义及平行线的判定定理即可填空.【详解】(已知),(垂直的定义).(已知),(同角的余角相等),(内错角相等,两直线平行).故答案为:;同角的余角相等;内错角相等,两直线平行.【点睛】此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.5、110︒度【分析】根据平行线的性质和角平分线的性质可得结论.【详解】解:∵AD//BC CE平分∠DCF AB//CD AD//BC 故答案为:110︒【点睛】本题主要考查了角的平分线以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.三、解答题1、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等【分析】ABCD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.【详解】证明:∵ABCD,(已知)∴∠B+∠BCD=180°,(两直线平行同旁内角互补)∵∠B=120°(已知),∴∠BCD=60°.CA平分∠BCD(已知),∴∠2=30°,(角平分线定义).ABCD(已知),∴∠1=∠2=30°.(两直线平行内错角相等).故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.2、(1)BC与⊙O相切,见解析;(2)【分析】(1)连接OD,根据等腰三角形的性质得到∠OED=∠ODE,∠OED=∠F,求得∠ODE=∠F,根据平行线的判定得到ODAC,根据平行线的性质得到∠ODB=∠ACB,推出ODBC,根据切线的判定定理即可得到结论;(2)根据平行线分线段成比例定理得到,于是得到结论.【详解】解:(1)BC与⊙O相切,理由:连接ODOEOD∴∠OED=∠ODEAEAF∴∠OED=∠F∴∠ODE=∠FODAC∴∠ODB=∠ACBDCAF∴∠ACB=90°,∴∠ODB=90°,ODBCOD是⊙O的半径,BC与⊙O相切;(2)∵ODACAE=5,AC=4,BE【点睛】本题考查等腰三角形的性质、切线的判定与性质、平行线的判定与性质等知识,是重要考点,掌握相关知识是解题关键.3、(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)DF【分析】(1)连接AC并向两端延长即可;(2)连接CD并延长CD即可;(3)连接BD即可;(4)过D作线段DFAB,垂足为F(5)根据垂线段的长度是点到直线的距离解答即可.【详解】解:(1)直线AC如图所示;(2)射线CD如图所示;(3)线段BD如图所示;(4)垂线段DF如图所示;(5)垂线段DF的长是点D到直线AB的距离,故答案为:DF【点睛】本题考查画直线、射线、线段、垂线段、点到直线的距离,熟练掌握基本作图方法,理解点到直线的距离的定义是解答的关键.4、100°【分析】由垂直的定义结合两角的比值可求解∠BOD的度数,即可求得∠BOE的度数,再利用角平分线的定义可求得∠BOC的度数,进而可求解∠COD的度数.【详解】解:∵OAOB∴∠AOB=90°,∵∠AOD:∠BOD=7:2,∴∠BODAOB=20°,∴∠BOE=180°﹣∠BOD=160°.OC平分∠BOE∴∠BOCBOE=80°,∴∠COD=∠BOC+∠BOD=80°+20°=100°.【点睛】本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD的度数是解题的关键.5、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析【分析】(1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG(2)求出∠EOG=∠BOG即可.【详解】解:(1)∵OGCD.∴∠GOC=∠GOD=90°,∵∠AOC=∠BOD=38°12′,∴∠BOG=90°﹣38°12′=51°48′,(2)OG是∠EOB的平分线,理由:OC是∠AOE的平分线,∴∠AOC=∠COE=∠DOF=∠BOD∵∠COE+∠EOG=∠BOG+∠BOD=90°,∴∠EOG=∠BOG即:OG平分∠BOE【点睛】本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.6、(1)见解析;(2)150°【分析】(1)根据画角平分线的方法,画出角平分线即可;(2)先求出的度数,然后由角平分线的定义,即可求出答案.【详解】解:(1)如图,OD即为平分线(2)解:∵【点睛】本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.7、(1)40°;(2)见解析;(3)70°【分析】(1)过点FFN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;(2)根据题目补充理由和相关结论即可;(3)类似(2)中的方法求解即可.【详解】解:(1)过点FFN∥ABFN∥AB,∠FEB=130°,∴∠EFN+∠FEB=180°,∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,∵∠EFG=90°,∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,AB∥CDFN∥CD∴∠FGC=∠NFG=40°.故答案为:40°;(2)如图②,过点EEMFG,交CD于点MAB∥CD(已知)∴∠BEM=∠EMC(两直线平行,内错角相等)又∵EM∥FG∴∠FGC=∠EMC(两直线平行,同位角相等)EFG+∠FEM=180°(两直线平行,同旁内角互补)即∠FGC=(∠BEM)(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC=90°故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°(3)过点EEH∥FG,交CD于点HAB∥CD∴∠BEH=∠EHC又∵EM∥FG∴∠FGC=∠EHCEFG+∠FEH=180°即∠FGC=∠BEH∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH又∵∠EFG=110°∴∠FEH=70°∴∠FEB﹣∠FGC=70°故答案为:70°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.8、AC,同位角相等,两直线平行;两直线平行,内错角相等;同旁内角互补,两直线平行;EFC,两直线平行,同位角相等;垂直定义【分析】根据平行线的判定与性质以及垂直的定义即可完成填空.【详解】解:如图,∵∠1=∠C,(已知),(同位角相等,两直线平行)∴∠2=∠DAC,(两直线平行,内错角相等)∵∠2+∠3=180°,(已知)∴∠DAC+∠3=180°,(等量代换),(同旁内角互补,两直线平行)∴∠ADC=∠EFC,(两直线平行,同位角相等)EFBC,(已知)∴∠EFC=90°,(垂直的定义)∴∠ADC=90°.(等量代换)【点睛】本题考查平行线的判定与性质,掌握平行线的判定定理以及性质是解题的关键.9、(1);(2)【分析】(1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;(2)先求解 再利用平角的定义可得答案.【详解】解:(1)AOC:∠AOD=3:7, OE平分∠BOD (2) 【点睛】本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.10、3.15【分析】根据跳远的距离应该是起跳板到P点的垂线段的长度进行求解即可【详解】解:由图形可知,小明的跳远成绩应该为PN的长度,即3.15米,故答案为:3.15.【点睛】本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键. 

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共32页。试卷主要包含了下列说法,如图,∠1与∠2是同位角的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题,共28页。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试习题,共29页。试卷主要包含了如图木条a,如图,直线b等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map