搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测评试卷

    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测评试卷第1页
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测评试卷第2页
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测评试卷第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第十三章 相交线 平行线综合与测试习题

    展开

    这是一份数学第十三章 相交线 平行线综合与测试习题,共28页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形纸片ABCD沿EF折叠后,∠FEC=30°,则∠AGE的度数为(    A.30° B.60° C.80° D.不能确定2、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为(  )A.40° B.50° C.140° D.150°3、点P是直线外一点,为直线上三点,,则点P到直线的距离是(      A.2cm B.小于2cm C.不大于2cm D.4cm4、下列图形中,∠1与∠2不是对顶角的有(  )A.1个 B.2个 C.3个 D.0个5、如图,直线ABCD相交于点OEOAB于点O,∠EOC=35°,则∠AOD的度数为(      A.55° B.125° C.65° D.135°6、如图所示,给出了过直线外一点P作已知直线l的平行线的方法,其依据是(    ).A.同位角相等,两直线平行. B.内错角相等,两直线平行.C.同旁内角互补,两直线平行. D.以上都不对.7、在如图中,∠1和∠2不是同位角的是(  )A. B.C. D.8、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点CD分别落在点C′,D′处,DEBF交于点G.已知∠BGD′=26°,则∠α的度数是(    A.77° B.64° C.26° D.87°9、如图所示,下列条件中,不能推出ABCE成立的条件是(    A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°10、如图,不能推出ab的条件是(  )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知ABACADBC,则点ABC的距离是线段____________的长度.2、如图,直线ABCD被直线AC所截得的内错角是 ___.3、如图,已知ABCD,∠1=55°,则∠2的度数为 ___.4、如图,ABCDAE平分∠CABCD于点E,若∠C=40°,则∠AEC=_____度.5、如图,EAD的延长线上,下列四个条件:①∠3=∠4;②∠C+∠ABC=180°;③∠A=∠CDE;④∠1=∠2,其中能判定ABCD的是________.(填序号)三、解答题(10小题,每小题5分,共计50分)1、完成下面的证明如图,点BAG上,AGCDCF平分∠BCD,∠ABE=∠FCBBEAFE求证:∠F=90°.证明:∵AGCD(已知)∴∠ABC=∠BCD(____)∵∠ABE=∠FCB(已知)∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCDCF平分∠BCD(已知)∴∠BCF=∠FCD(____)∴____=∠BCF(等量代换)BECF(____)∴____=∠F(____)BEAF(已知)∴____=90°(____)∴∠F=90°.2、如图,①过点QQDAB,垂足为点D②过点PPEAB,垂足为点E③过点QQFAC,垂足为点F④连PQ两点;PQ两点间的距离是线段______的长度;⑥点Q到直线AB的距离是线段______的长度;⑦点Q到直线AC的距离是线段______的长度;⑧点P到直线AB的距离是线段______的长度.3、如图,∠ENC+∠CMG=180°,ABCD(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.4、如图,CDABD,点FBC上任意一点,FEABE,且∠1=∠2,∠B=60°.试求∠ADG的度数.5、直线AB//CD,直线EF分别交AB、CD于点MNNP平分∠MND(1)如图1,若MR平分∠EMB,则MRNP的位置关系是      (2)如图2,若MR平分∠AMN,则MRNP有怎样的位置关系?请说明理由.(3)如图3,若MR平分∠BMN,则MRNP有怎样的位置关系?请说明理由.6、如图,在中,平分D平分F,已知,求证:7、如图,直线CDEF相交于点O,将一直角三角尺AOB的直角顶点与点O重合.(1)如图1,若,试说明(2)如图2,若OB平分.将三角尺以每秒5°的速度绕点O顺时针旋转,设运动时间为t秒.,当t为何值时,直线OE平分②当,三角尺AOB旋转到三角POQAB分别对应PQ)的位置,若OM平分,求的值.8、已知:如图,直线,直线MNEFPO于点AB,直线HQEFPO于点DCDGOP交于点G,若(1)求证:(2)请直接写出的度数.9、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.10、如图,直线交于点于点,且的度数是的4倍.(1)求的度数;(2)求的度数. -参考答案-一、单选题1、B【分析】由翻折变换的性质求出∠GEF的度数,再利用平行线的性质可得出结论.【详解】解:∵ADBC,∠FEC=30°,∴∠AGE=∠GEC由翻折变换的性质可知∠GEF=∠FEC=30°,∴∠AGE=∠GEC=∠GEF+∠FEC=30°+30°=60°.故选:B.【点睛】本题考查了平行线的性质以及折叠的性质,根据平行线的性质找到相等(或互补)的角是关键.2、C【分析】由于拐弯前、后的两条路平行,用平行线的性质求解即可.【详解】解:∵拐弯前、后的两条路平行,(两直线平行,内错角相等).故选:C.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.3、C【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且∴点到直线的距离不大于故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.4、C【分析】根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.【详解】解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;②中∠1和∠2是对顶角,故②不符合题意;③中∠1和∠2的两边不互为反向延长线,故③符合题意;④中∠1和∠2没有公共点,故④符合题意.∴∠1 和∠2 不是对顶角的有3个,故选C.【点睛】此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.5、B【分析】先根据余角的定义求得,进而根据邻补角的定义求得即可.【详解】EOAB,∠EOC=35°,故选:B.【点睛】本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.6、A【分析】由作图可得同位角相等,根据平行线的判定可作答.【详解】解:由图形得,有两个相等的同位角,所以依据为:同位角相等,两直线平行.故选:A【点睛】本题考查的是作平行线,熟知过直线外一点,作已知直线的平行线的方法和平行线的判定定理是解答此题的关键.7、D【分析】同位角的定义:两条直线ab被第三条直线c所截,在截线c的同侧,被截两直线ab的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.8、A【分析】本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.【详解】解:由图可知: AD∥BC∴∠AEG=∠BGD′=26°,即:∠GED=154°,由折叠可知: ∠α=∠FED∴∠α==77°故选:A.【点睛】本题主要考察的是根据平行得性质进行角度的转化.9、B【分析】根据平行线的判定定理分析即可.【详解】A、∠A和∠ACEABCEAC所截形成的内错角,则∠A=∠ACE时,可以推出ABCE,不符合题意;B、∠B和∠ACE不属于ABCE被第三条直线所截形成的任何角,则∠B=∠ACE时,无法推出ABCE,符合题意;C、∠B和∠ECDABCEBD所截形成的同位角,则∠B=∠ECD时,可以推出ABCE,不符合题意;D、∠B和∠BCE ABCEBD所截形成的同旁内角,则∠B+∠BCE=180°时,可以推出ABCE,不符合题意;故选:B.【点睛】本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.10、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:是一对内错角,当时,可判断,故不符合题意;是邻补角,当时,不能判定,故符合题意;是一对同位角,当时,可判断,故不合题意;是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.二、填空题1、##【分析】根据定义分析即可,点的距离,垂足在直线上,据此即可求得答案.【详解】ABC的距离是线段故答案为:【点睛】本题考查了垂线段的定义,理解定义是解题的关键.2、∠2与∠4【分析】根据内错角的特点即可求解.【详解】由图可得直线ABCD被直线AC所截得的内错角是∠2与∠4故答案为:∠2与∠4.【点睛】此题主要考查内错角的识别,解题的关键是熟知内错角的特点.3、【分析】如图(见解析),先根据平行线的性质可得,再根据邻补角的定义即可得.【详解】解:如图,故答案为:【点睛】本题考查了平行线的性质、邻补角,熟练掌握平行线的性质是解题关键.4、70【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,再根据平行线性质求出∠AEC的度数即可.【详解】解:∵ABCD∴∠C+∠CAB=180°, ∵∠C=40°, ∴∠CAB=180°-40°=140°, AE平分∠CAB∴∠EAB=70°, ABCD∴∠AEC=EAB=70°, 故答案为70.【点睛】本题考查角平分线的定义和平行线的性质,解题的关键是熟练掌握两条平行线被第三条直线所截,同旁内角互补.5、②③④【分析】根据平行线的判定定理,逐一判断,即可得到答案.【详解】∴①不符合题意;∠C+∠ABC=180°,ABCD∴②符合题意;∠A=∠CDEABCD∴③符合题意;∵∠1=∠2,ABCD故答案为:②③④.【点睛】本题主要考查平行线的判定定理,掌握平行线的判定定理是解题的关键.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.三、解答题1、两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义【分析】根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义进而得到∠EBC=∠BCF,即可判定BE∥CF,根据平行线的性质得出∠BEF=∠F,再根据垂直的定义即可得解.【详解】证明:∵AG∥CD(已知),∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABE=∠FCB(已知),∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCDCF平分∠BCD(已知),∴∠BCF=∠FCD(角平分线的定义),∴∠EBC=∠BCF(等量代换),BE∥CF(内错角相等,两直线平行),∴∠BEF=∠F(两直线平行,内错角相等),BEAF(已知),∴∠BEF=90°(垂直的定义),∴∠F=90°.故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟练掌握相关知识是解题的关键.2、①②③④作图见解析;⑤PQ;⑥QD;⑦QF;⑧PE【分析】由题意①②③④根据题目要求即可作出图示,⑤⑥⑦⑧根据两点之间距离及点到直线的距离的定义即可得出答案.【详解】①②③④作图如图所示;⑤根据两点之间距离即可得出PQ两点间的距离是线段PQ的长度;⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.【点睛】本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键.3、(1)见解析;(2)34°【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FGED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN∴∠ENC+∠FMN=180°,FGED∴∠2=∠DABCD∴∠3=∠D∴∠2=∠3;(2)解:∵ABCD∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,ABCD∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.4、60°【分析】CDABFEAB,则,则∠2=∠4,从而证得,得∠B=∠ADG,则答案可解.【详解】解:CDABDFEABE∴∠2=∠4,又∵∠1=∠2,∴∠1=∠4,【点睛】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.5、(1)MR//NP;(2)MR//NP,理由见解析;(3)MRNP,理由见解析【分析】(1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMBNP平分∠EBD,得出,可证∠EMR=∠ENP即可;(2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMNNP平分∠EBD,可得,得出∠RMN=∠ENP即可;(3设MRNP交于点Q,过点QQG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMNNP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥ABAB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.【详解】证明:(1)结论为MRNP.如题图1∵AB∥CD∴∠EMB=∠ENDMR平分∠EMBNP平分∠EBD∴∠EMR=∠ENPMR∥BP故答案为MR∥BP(2)结论为:MR∥NP.如题图2,∵AB∥CD∴∠AMN=∠ENDMR平分∠AMNNP平分∠EBD∴∠RMN=∠ENPMR∥NP(3)结论为:MRNP如图,设MRNP交于点Q,过点QQG∥ABAB∥CD∴∠BMN+∠END=180°,MR平分∠BMNNP平分∠EBD∴∠BMR+∠NPD=GQ∥ABAB∥CDGQ∥CD∥AB∴∠BMQ=∠GQM,∠GQN=∠PND∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,MRNP【点睛】本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.6、见解析【分析】根据∠ADE=∠B可判定DEBC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EFCD【详解】证明:(已知),(同位角相等,两直线平行),(两直线平行,同位角相等),平分平分(已知),(角平分线的定义),(等量代换).(同位角相等,两直线平行).【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.7、(1)见解析;(2)①;②【分析】(1)根据垂直的性质即可求解;(2)①分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;②根据,可知OP内部,根据题意作图,分别表示出,故可求解.【详解】解:(1)∵(2)①∵OB平分情况1:当OE平分时,则旋转之后OB旋转的角度为情况2:当OF平分时,同理可得,OB旋转的角度为综上所述,②∵OP内部,如图所示,由题意知,,∵OM平分【点睛】此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系.8、(1)见解析;(2)【分析】(1)根据可得,,再根据内错角相等两直线平行即可得证;(2)根据两直线平行的性质可得,从而可得,再由即可求解.【详解】解:(1)∵(2)∵【点睛】本题考查了平行线的判定及性质,解题的关键是掌握平行线的判定及性质,利用数形结合的思想进行求解.9、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,AOD=BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.因为∠AOC和∠BOC相邻,所以∠BOC的邻补角为:∠AOC.BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.10、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE =54°【分析】(1)先由的度数是的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到∠AOD+∠BOD=180°,由此求解即可;(2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.【详解】解:(1)∵的度数是的4倍,∴∠BOD=4∠AOD又∵∠AOD+∠BOD=180°,∴5∠AOD=180°,∴∠AOD=36°,∴∠BOD=144°;(2)∵OECD∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=54°.【点睛】本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键. 

    相关试卷

    2020-2021学年第十三章 相交线 平行线综合与测试测试题:

    这是一份2020-2021学年第十三章 相交线 平行线综合与测试测试题,共32页。试卷主要包含了下列说法中正确的是,如图,已知,,平分,则等内容,欢迎下载使用。

    2021学年第十三章 相交线 平行线综合与测试同步测试题:

    这是一份2021学年第十三章 相交线 平行线综合与测试同步测试题,共28页。试卷主要包含了下列说法等内容,欢迎下载使用。

    2020-2021学年第十三章 相交线 平行线综合与测试同步练习题:

    这是一份2020-2021学年第十三章 相交线 平行线综合与测试同步练习题,共31页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map