![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12708140/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12708140/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12708140/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中第十三章 相交线 平行线综合与测试课时训练
展开
这是一份初中第十三章 相交线 平行线综合与测试课时训练,共27页。试卷主要包含了直线m外一点P它到直线的上点A,下列说法等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的有( )个①两条直线被第三条直线所截,同位角相等;②同一平面内,不相交的两条线段一定平行;③过一点有且只有一条直线垂直于已知直线;④经过直线外一点有且只有一条直线与这条直线平行;⑤从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.A.1 B.2 C.3 D.42、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )A.39° B.41° C.49° D.51°3、如图,木工用图中的角尺画平行线的依据是( )A.垂直于同一条直线的两条直线平行B.平行于同一条直线的两条直线平行C.同位角相等,两直线平行D.经过直线外一点,有且只有一条直线与这条直线平行4、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )A.77° B.64° C.26° D.87°5、直线m外一点P它到直线的上点A、B、C的距离分别是6cm、5cm、3cm,则点P到直线m的距离为( )A.3cm B.5cm C.6cm D.不大于3cm6、下列说法:(1)两条不相交的直线是平行线;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内两条不相交的线段一定平行;(4)过一点有且只有一条直线与已知直线垂直;(5)两点之间,直线最短;其中正确个数是( )A.0个 B.1个 C.2个 D.3个7、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )A.两点之间,线段最短B.两点之间,直线最短C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短8、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )A.30° B.60° C.30°或60° D.60°或120°9、若∠1与∠2是内错角,则它们之间的关系是 ( )A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠210、下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是( )A.① B.②和③ C.④ D.①和④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一副三角板按如图所示的方式摆放,AC∥DF,BC与EF相交于点G,则∠CGF度数为 _____度.2、如图,AC平分∠DAB,∠1=∠2,试说明.证明:∵AC平分∠DAB(_______),∴∠1=∠______(________),又∵∠1=∠2(________),∴∠2=∠______(________),∴AB______(________).3、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°. 4、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AEC=_____度.5、如图,∠C=90°,线段AB=10cm,线段AD=8cm,线段AC=6cm,则点A到BC的距离为_____cm.三、解答题(10小题,每小题5分,共计50分)1、如图,已知,平分,平分,求证.证明:∵平分(已知),∴ ( ),同理 ,∴ ,又∵(已知)∴ ( ),∴.2、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.(1)写出∠AOF的一个余角和一个补角.(2)若∠BOE=60°,求∠AOD的度数.(3)∠AOF与∠EOF相等吗?说明理由.3、如图,OA⊥OB于点O,∠AOD:∠BOD=7:2,点D、O、E在同一条直线上,OC平分∠BOE,求∠COD的度数.4、(1)用三角尺或量角器画已知直线的垂线,这样的垂线能画出几条?(2)经过直线上一点A画的垂线,这样的垂线能画出几条?(3)经过直线外一点B画的垂线,这样的垂线能画出几条?5、如图,已知,,,试说明直线AD与BC垂直(请在下面的解答过程的空格内填空或在括号内填写理由).理由:C,(已知) ,( ) .( )又,(已知) =180°.(等量代换) ,( ).( ),(已知), .6、作图并计算:如图,点O在直线上.(1)画出的平分线(不必写作法);(2)在(1)的前提下,若,求的度数.7、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:(1)如图a,在线段AB上找一点P,使PC+PD最小.(2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.(3)如图c,画线段CM∥AB.要求点M在格点上.8、如图,在8×6的正方形网格中,每个小正方形的顶点称为格点,点D是∠ABC的边BC上的一点,点M是∠ABC内部的一点,点A、B、C、D、M均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:(1)过点M画BC的平行线MN交AB于点N;(2)过点D画BC的垂线DE,交AB于点E;(3)点E到直线BC的距离是线段 的长度.9、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB达到60°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.10、如图,OB⊥OD,OC平分∠AOD,∠BOC=35°,求∠AOD和∠AOB的大小. -参考答案-一、单选题1、A【分析】根据平行线的性质,垂线的性质,平行公理,点到直线的距离的定义逐项分析判断即可.【详解】①互相平行的两条直线被第三条直线所截,同位角相等,故①不正确;②同一平面内,不相交的两条直线一定平行,故②不正确;③同一平面内,过一点有且只有一条直线垂直于已知直线,故③不正确;④经过直线外一点有且只有一条直线与这条直线平行,故④正确⑤从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故⑤不正确.故正确的有④,共1个,故选A.【点睛】本题考查了平行线的性质,平行公理,垂线的性质,点到直线的距离,掌握相关定理性质是解题的关键.2、C【分析】由题意直接根据平行线的性质进行分析计算即可得出答案.【详解】解:如图,∵AB∥CD,∠C=131°,∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),∵AE∥CF,∴∠A=∠C=49°(两直线平行,同位角相等).故选:C.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.3、C【分析】由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.【详解】由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.故选:C【点睛】本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.4、A【分析】本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.【详解】解:由图可知: AD∥BC∴∠AEG=∠BGD′=26°,即:∠GED=154°,由折叠可知: ∠α=∠FED,∴∠α==77°故选:A.【点睛】本题主要考察的是根据平行得性质进行角度的转化.5、D【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【详解】解:垂线段最短,点到直线的距离,故选:D.【点睛】本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短.6、B【分析】根据平面内相交线和平行线的基本性质逐项分析即可.【详解】解:(1)在同一平面内,两条不相交的直线是平行线,故原说法错误; (2)过直线外一点有且只有一条直线与已知直线平行,故原说法错误;(3)在同一平面内两条不相交的线段不一定平行,故原说法错误;(4)过一点有且只有一条直线与已知直线垂直,故原说法正确;(5)两点之间,线段最短,故原说法错误;故选:B.【点睛】本题考查平面内两直线的关系,及其推论等,掌握基本概念和推论是解题关键.7、D【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.8、D【分析】根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.【详解】解:如图1,∵a∥b,∴∠1=∠α,∵c∥d,∴∠β=∠1=∠α=60°;如图(2),∵a∥b,∴∠α+∠2=180°,∵c∥d,∴∠2=∠β,∴∠β+∠α=180°,∵∠α=60°,∴∠β=120°.综上,∠β=60°或120°.故选:D.【点睛】本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.9、D【分析】根据内错角角的定义和平行线的性质判断即可.【详解】解:∵只有两直线平行时,内错角才可能相等,∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能,故选D.【点睛】本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.10、A【分析】利用平行线的性质逐一判断即可.【详解】①是平行线的性质,故符合题意;②是平行线的判定,故不符合题意;③是平行线的判定,故不符合题意;④是平行线的判定,故不符合题意;故选:A.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定的区别是关键.二、填空题1、30【分析】先证明再证明再利用平行线的性质与对顶角的性质可得答案.【详解】解:如图,记交于点 由题意得: 故答案为:【点睛】本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.2、已知 3 角平分线的定义 已知 3 等量代换 CD 内错角相等,两直线平行 【分析】根据平行线证明对书写过程的要求和格式填写即可.【详解】证明:∵AC平分∠DAB(已知),∴∠1=∠ 3 (角平分线的定义),又∵∠1=∠2(已知),∴∠2=∠ 3 (等量代换),∴AB∥CD (内错角相等,两直线平行).故答案为:已知;3;角平分线的定义;已知;3;等量代换;CD;内错角相等,两直线平行【点睛】本题主要考查平行线证明的书写,正确的逻辑推理和书写格式是解题的关键.3、120【分析】由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.【详解】解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,∴∠BOC=120°.故答案为:120.【点睛】本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.4、70【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,再根据平行线性质求出∠AEC的度数即可.【详解】解:∵ABCD, ∴∠C+∠CAB=180°, ∵∠C=40°, ∴∠CAB=180°-40°=140°, ∵AE平分∠CAB, ∴∠EAB=70°, ∵ABCD, ∴∠AEC=∠EAB=70°, 故答案为70.【点睛】本题考查角平分线的定义和平行线的性质,解题的关键是熟练掌握两条平行线被第三条直线所截,同旁内角互补.5、6【分析】根据点到直线的距离的定义,可得答案.【详解】解:因为∠C=90°,所以AC⊥BC,所以A到BC的距离是AC,因为线段AC=6cm,所以点A到BC的距离为6cm.故答案为:6.【点睛】本题考查了点到直线的距离,明确定义是关键.三、解答题1、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=∠ABC(角平分线的定义),同理∠1=∠BCD,∴∠1+∠2=(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°.故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.2、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析【分析】(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.【详解】解:(1)∵OC⊥CD,∴∠DOF=90°,∴∠AOF+∠AOD=90°,又∵∠BOC=∠AOD,∴∠AOF+∠BOC=90°,∵OC平分∠BOE,∴∠COE=∠BOC,∴∠AOF+∠COE=90°;∴∠AOF的余角是,∠COE,∠BOC,∠AOD;∵∠AOF+∠BOF=180°,∴∠AOF的补角是∠BOF;(2)∵OC平分∠BOE,∠BOE=60°,∴∠BOC=30°,又∵∠AOD=∠BOC,∴∠AOD=30°;(3)∠AOF=∠EOF,理由如下:由(1)可得∠AOD=∠BOC=∠COE,∵OF⊥OC,∴∠DOF=∠COF=90°,∴∠AOD+∠AOF=∠EOF+∠COE=90°,∴∠AOF=∠EOF.【点睛】本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.3、100°【分析】由垂直的定义结合两角的比值可求解∠BOD的度数,即可求得∠BOE的度数,再利用角平分线的定义可求得∠BOC的度数,进而可求解∠COD的度数.【详解】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOD:∠BOD=7:2,∴∠BOD=∠AOB=20°,∴∠BOE=180°﹣∠BOD=160°.∵OC平分∠BOE,∴∠BOC=∠BOE=80°,∴∠COD=∠BOC+∠BOD=80°+20°=100°.【点睛】本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD的度数是解题的关键.4、(1)能画无数条;(2)能画一条;(3)能画一条【分析】用三角板的一条直角边与已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和点A(或点B)重合,过点A(或点B)沿直角边向已知直线画直线即可,在两线相交处标出垂足(直角符号),据此即可解答.【详解】解:(1)根据题意得:画已知直线的垂线,这样的垂线能画出无数条;(2)根据题意得:经过直线上一点A画的垂线,这样的垂线能画出一条;(3)根据题意得:经过直线外一点B画的垂线,这样的垂线能画出一条.【点睛】本题主要考查了画已知直线的垂线,熟练掌握同一平面内,过已知点有且只有一条直线与已知直线垂直是解题的关键.5、GD;AC;同位角相等,两直线平行;;两直线平行,内错角相等;;AD;EF;同旁内角互补,两直线平行;两直线平行,同位角相等;AD;BC【分析】结合图形,根据平行线的判定和性质逐一进行填空即可.【详解】解:,已知,同位角相等,两直线平行两直线平行,内错角相等又,(已知)(等量代换),同旁内角互补,两直线平行)(两直线平行,同位角相等),(已知) ,,.【点睛】本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.6、(1)见解析;(2)150°【分析】(1)根据画角平分线的方法,画出角平分线即可;(2)先求出的度数,然后由角平分线的定义,即可求出答案.【详解】解:(1)如图,OD即为平分线(2)解:∵,∴,,∴;【点睛】本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.7、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.【详解】解:(1)如图a,点P即为所求;(2)如图b,点Q和线段CQ即为所求;(3)如图c,线段CM即为所求.【点睛】本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.8、(1)见解析;(2)见解析;(3)DE【分析】(1)根据平行线的判定条件:同位角相同,两直线平行,进行作图即可;(2)根据垂线的定义作图即可;(3)根据点到直线的距离的定义求解即可.【详解】解:(1)如图所示,点N即为所求;(2)如图所示,点E即为所求;(3)由题意可知:点E到直线BC的距离是线段DE的长度,故答案为:DE.【点睛】本题主要考查了点到直线的距离,平行线的判定,作垂线,画平行线,解题的关键在于能够熟练掌握相关知识进行求解.9、(1)150°;(2)12或24;(3)存在,9秒、27秒【分析】(1)根据∠AOB=180°−∠AOM−∠BON计算即可.(2)先求解重合时,再分两种情况讨论:当0≤t≤18时;当18≤t≤30时;再构建方程求解即可.(3)分两种情形,当0≤t≤18时;当18≤t≤30时;分别构建方程求解即可.【详解】解:(1)当t=3时,∠AOB=180°−4°×3−6°×3=150°.(2)当重合时, 解得: 当0≤t≤18时: 4t+6t=120解得: 当18≤t≤30时:则 4t+6t=180+60,解得 t=24,答:当∠AOB达到60°时,t的值为6或24秒.(3) 当0≤t≤18时,由 180−4t−6t=90,解得t=9,当18≤t≤30时,同理可得: 4t+6t=180+90 解得t=27. 所以大于的答案不予讨论,答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9秒、27秒.【点睛】本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.10、∠AOD=110°,∠AOB=20°【分析】根据OB⊥OD,先可求出∠COD,再根据角平分线的性质求出∠AOD,利用角度的关系即可求出∠AOB.【详解】解:∵OB⊥OD∴∠BOD=90°∵∠BOC=35°,∴∠COD=90°-∠BOC=55°∵OC平分∠AOD,∴∠AOD=2∠COD=110°∴∠AOB=∠AOD-∠BOD=110°-90°=20°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后测评,共31页。试卷主要包含了下列说法,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共32页。试卷主要包含了下列说法,如图,直线AB,如图,直线b等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共28页。试卷主要包含了如图,在等内容,欢迎下载使用。