终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试卷(无超纲带解析)

    立即下载
    加入资料篮
    2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试卷(无超纲带解析)第1页
    2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试卷(无超纲带解析)第2页
    2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试卷(无超纲带解析)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题,共30页。试卷主要包含了下列关于画图的语句正确的是.,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线同步测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )

    A.125° B.115° C.105° D.95°
    2、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是(  )

    A.3.5 B.4 C.5 D.5.5
    3、一把直尺与一块直角三角板按如图方式摆放,若∠1=28°,则∠2=(  )

    A.62° B.58° C.52° D.48°
    4、如图,已知直线,相交于O,平分,,则的度数是( )

    A. B. C. D.
    5、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的(  )方向.

    A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°
    6、下列关于画图的语句正确的是( ).
    A.画直线
    B.画射线
    C.已知A、B、C三点,过这三点画一条直线
    D.过直线AB外一点画一直线与AB平行
    7、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为(  )

    A.40° B.50° C.140° D.150°
    8、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )

    A.30° B.40° C.50° D.60°
    9、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为(  )

    A.30° B.40° C.50° D.60°
    10、下列各图中,∠1与∠2是对顶角的是(  )
    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在同一平面内的三条直线,它们的交点个数可能是________.
    2、如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与反射光线的夹角为50°,则平面镜与水平地面的夹角的度数是______.

    3、如图在△ABC中,AB=AC=5,S△ABC=10,AD是△ABC的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为______.

    4、指出图中各对角的位置关系:
    (1)∠C和∠D是_____角;
    (2)∠B和∠GEF是____角;
    (3)∠A和∠D是____角;
    (4)∠AGE和∠BGE是____角;
    (5)∠CFD和∠AFB是____角.

    5、填写推理理由:
    如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.

    证明:∵CD∥EF,
    ∴∠DCB=∠2________.
    ∵∠1=∠2,
    ∴∠DCB=∠1________.
    ∴GD∥CB________.
    ∴∠3=∠ACB________.
    三、解答题(10小题,每小题5分,共计50分)
    1、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.
    (1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;
    (2)当点E落在直线AC上时,直接写出∠BAD的度数;
    (3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数.

    2、如图,已知点O是直线AB上一点,射线OM平分.
    (1)若,则______度;
    (2)若,求的度数.

    3、感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.
    证明:过点E作直线EF∥CD,
    ∠2=______,( )
    AB∥CD(已知),EF∥CD
    _____∥EF,( )
    ∠B=∠1,( )
    ∠1+∠2=∠BED,
    ∠B+∠D=∠BED,( )
    方法与实践:如图②,直线AB∥CD.若∠D=53°,∠B=22°,则∠E=______度.

    4、在三角形ABC中,于D,F是BC上一点,于H,E在AC上,.

    (1)如图1,求证:;
    (2)如图2,若,请直接写出图中与互余的角,不需要证明.
    5、如图,直线AB,CD相交于点O,OM⊥AB于点O,ON⊥CD于点O.
    (1)试说明∠1=∠2;
    (2)若∠BOC=4∠2,求∠AOC的大小.

    6、如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为 _____米.(填具体数值)

    7、如图,AB∥DG,∠1+∠2=180°.

    (1)试说明:AD∥EF;
    (2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.
    8、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.
    (1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;
    (2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);
    (3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).

    9、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
    解:∵∠AOE=40°(已知)
    ∴∠AOF=180°﹣ (邻补角定义)
    =180°﹣ °
    = °
    ∵OC平分∠AOF(已知)
    ∴∠AOC∠AOF( )
    ∵∠AOB=90°(已知)
    ∴∠BOD=180°﹣∠AOB﹣∠AOC( )
    =180°﹣90°﹣ °
    = °

    10、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.

    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=  (   ).
    ∴AB∥  (   ).
    又∵∠1=∠2(已知),
    ∴AB∥CD (   ).
    ∴EF∥   (   ).
    ∴∠FDG=∠EFD (   ).

    -参考答案-
    一、单选题
    1、A
    【分析】
    利用互余角的概念与邻补角的概念解答即可.
    【详解】
    解:∵∠1=35°,∠AOC=90°,
    ∴∠BOC=∠AOC−∠1=55°.
    ∵点B,O,D在同一条直线上,
    ∴∠2=180°−∠BOC=125°.
    故选:A.
    【点睛】
    本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.
    2、D
    【分析】
    直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.
    【详解】
    ∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.
    ∵AB=3,
    ∴AC=5,
    ∴3≤AP≤5,
    故AP不可能是5.5,
    故选:D.
    【点睛】
    本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.
    3、A
    【分析】
    过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
    【详解】
    解:如图,过三角板的直角顶点作直尺两边的平行线,

    ∵直尺的两边互相平行,
    ∴,
    ∴,
    ∴,
    故选:A.
    【点睛】
    本题考查平行线的性质,掌握平行线的性质是解题的关键.
    4、C
    【分析】
    先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
    【详解】
    解:∵OA平分∠EOC,∠EOC=100°,
    ∴∠AOC=∠EOC=50°,
    ∴∠BOC=180°﹣∠AOC=130°.
    故选:C.
    【点睛】
    本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
    5、D
    【分析】
    根据方向角的概念,和平行线的性质求解.
    【详解】
    解:如图:

    ∵AF∥DE,
    ∴∠ABE=∠FAB=43°,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠CBD=180°﹣90°﹣43°=47°,
    ∴C地在B地的北偏西47°的方向上.
    故选:D.
    【点睛】
    本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.
    6、D
    【分析】
    直接利用直线、射线的定义分析得出答案.
    【详解】
    解:A、画直线AB=8cm,直线没有长度,故此选项错误;
    B、画射线OA=8cm,射线没有长度,故此选项错误;
    C、已知A、B、C三点,过这三点画一条直线或2条、三条直线,故此选项错误;
    D、过直线AB外一点画一直线与AB平行,正确.
    故选:D.
    【点睛】
    此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.
    7、D
    【分析】
    由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.
    【详解】
    解:∵拐弯前、后的两条路平行,
    ∴∠B=∠C=150°(两直线平行,内错角相等).
    故选:D.
    【点睛】
    本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
    8、C
    【分析】
    由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
    【详解】
    解:由题意,
    ∵∠BMN与∠AME是对顶角,
    ∴∠BMN=∠AME=130°,
    ∵AB∥CD,
    ∴∠BMN+∠DNM=180°,
    ∴∠DNM=50°;
    故选:C.
    【点睛】
    本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
    9、D
    【分析】
    根据平行线的性质和垂直的定义解答即可.
    【详解】
    解:∵BC⊥l3交l1于点B,
    ∴∠ACB=90°,
    ∵∠2=30°,
    ∴∠CAB=180°−90°−30°=60°,
    ∵l1l2,
    ∴∠1=∠CAB=60°.
    故选:D.
    【点睛】
    此题考查平行线的性质,关键是根据平行线的性质解答.
    10、B
    【分析】
    根据对顶角的定义作出判断即可.
    【详解】
    解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.
    故选:B.
    【点睛】
    本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
    二、填空题
    1、0或1或2或3个
    【分析】
    分类讨论画出图形,①当三条直线平行时,没有交点;②三条直线交于一点时,有一个交点;③两条平行线与一条直线相交时,有两个交点;④三条直线两两相交时有三个交点吗,即可得出答案.
    【详解】
    解:如图,

    由图可知:同一平面内的三条直线,其交点个数为:0个;1个;2个;3个.
    故答案是:0个或1个或2个或3个
    【点睛】
    本题主要考查了相交线和平行线.正确画出图形,即可得到正确结果.
    2、65°
    【分析】
    作CD⊥平面镜,垂足为G,交地面于D.根据垂线的性质可得∠CDH+α=90°,根据平行线的性质可得∠AGC=∠CDH,根据入射角等于反射角可得,从而可得夹角的度数.
    【详解】
    解:如图,作CD⊥平面镜,垂足为G,交地面于D.
    ∴∠CDH+α=90°,
    根据题意可知:AG∥DF,
    ∴∠AGC=∠CDH,

    ∴∠CDH=25°,
    ∴α=65°.
    故答案为:65°.

    【点睛】
    本题考查了入射角等于反射角问题,解决本题的关键是掌握平行线的性质、明确法线CG平分∠AGB.
    3、4
    【分析】
    作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF即可得出答案.
    【详解】
    解:方法一:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,
    ∵S△ABC=×AB×CN,
    ∴CN=4,
    ∵E关于AD的对称点M,
    ∴EF=FM,
    ∴CF+EF=CF+FM=CM,
    根据垂线段最短得出:CM≥CN,
    即CF+EF≥4,
    即CF+EF的最小值是4.

    方法二:∵AB=AC,AD是△ABC的中线,
    ∴AD⊥BC,
    ∴点C与点B关于AD对称,
    过B作BE⊥AC于E,交AD于F,连接CF,
    则此时,CF+EF的值最小,且最小值为BE,
    ∵S△ABC=•AC•BE=10,
    ∴BE=4,
    ∴CF+EF的最小值4,

    故答案为:4.
    【点睛】
    本题考查了垂线段最短以及对称轴作图,结合等腰三角形的性质取E或C对称点连接是解题的关键.
    4、同旁内 同位 内错 邻补 对顶
    【分析】
    根据同位角,同旁内角,内错角,邻补角,对顶角的定义进行逐一判断即可.
    【详解】
    解:(1)∠C和∠D是同旁内角;
    (2)∠B和∠GEF是同位角;
    (3)∠A和∠D是内错角;
    (4)∠AGE和∠BGE是邻补角;
    (5)∠CFD和∠AFB是对顶角;
    故答案为:(1)同旁内 (2)同位 (3)内错 (4)邻补(5)对顶.
    【点睛】
    本题主要考查了同位角,同旁内角,内错角,邻补角,对顶角的定义,解题的关键在于能够熟知定义.
    5、两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等
    【分析】
    根据平行线的性质得出,求出,根据平行线的判定得出,利用平行线的性质即可得出.
    【详解】
    证明:
    ∵,
    ∴(两直线平行,同位角相等)
    ∵,
    ∴.(等量代换)
    ∴(内错角相等,两直线平行).
    ∴(两直线平行,同位角相等).
    故答案为:①两直线平行,同位角相等;②等量代换;③内错角相等,两直线平行;④两直线平行,同位角相等.
    【点睛】
    题目主要考查平行线的判定定理及性质,理解题意,结合图形,综合运用判定的性质定理是解题关键.
    三、解答题
    1、(1);(2);(3)的值为:或.
    【分析】
    (1)先求解 再利用角的和差关系可得答案;
    (2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;
    (3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.
    【详解】
    解:(1) ∠BAD=18°,∠EAD=∠BAD,




    (2)当落在的下方时,如图,


    当落在的上方时,如图,




    (3)当落在的内部时,如图,

    ∠CAE:∠BAD=7:4,

    当落在的外部时,如图,
    ∠CAE:∠BAD=7:4,

    设则


    解得:

    综上:的值为:或.
    【点睛】
    本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.
    2、(1),(2)
    【分析】
    (1)根据平角的定义可求;
    (2)根据和,代入解方程求出即可.
    【详解】
    解:(1)∵,
    ∴,
    故答案为:.
    (2)∵OM平分,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.
    3、∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.
    【分析】
    过点E作直线EF//CD,由两直线平行,内错角相等得出∠2=∠D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB//EF;由两直线平行,内错角相等得出∠B=∠1;由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED;方法与实践:如图②,由平行的性质可得∠BOD=∠D=53°,然后再根据三角形外角的性质解答即可
    【详解】
    解:过点E作直线EF∥CD,
    ∠2=∠D,(两直线平行,内错角相等)
    AB∥CD(已知),EF∥CD
    AB//EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)
    ∠B=∠1,(两直线平行,内错角相等)
    ∠1+∠2=∠BED,
    ∠B+∠D=∠BED,(等量代换 )
    方法与实践:如图②,
    ∵直线AB∥CD
    ∴∠BOD=∠D=53°
    ∵∠BOD=∠E+∠B
    ∴∠E=∠BOD-∠B=53°- 22°=31°.
    故答案依次为:∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.

    【点睛】
    本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键.
    4、
    (1)证明见解析;
    (2).
    【分析】
    (1)由垂直于同一条直线的两直线平行可推出.再根据平行线的性质可得出,即得出.最后根据平行线的判定条件,即可判断;
    (2)由可推出,,即得出,.由,可推出,即得出.由,可直接推出.由此即可判断哪些角与互余.
    (1)
    证明:∵,,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)
    与互余的角有:.
    证明:∵,
    ∴,,
    ∴,.
    ∵,
    ∴,
    ∴.
    ∵,
    ∴,即.
    综上,可知与互余的角有:.
    【点睛】
    本题考查平行线的判定和性质,余角的概念.熟练掌握平行线的判定条件和性质是解答本题的关键.
    5、(1)见解析;(2)60°
    【分析】
    (1)利用同角的余角相等解答即可得出结论;
    (2)利用(1)的结论,等量代换可得∠BOC=4∠1,利用∠BOM=90°=3∠1,求得∠1的度数,则∠AOC=90°﹣∠1.
    【详解】
    解:(1)∵OM⊥AB,ON⊥CD,
    ∴∠AOM=∠CON=90°,
    ∴∠AOC+∠1=90°,∠AOC+∠2=90°,
    ∴∠1=∠2.
    (2)∵OM⊥AB,
    ∴∠BOM=90°.
    ∵∠1=∠2,∠BOC=4∠2,
    ∴∠BOC=4∠1.
    ∴∠BOM=∠BOC﹣∠1=4∠1﹣∠1=3∠1,
    即3∠1=90°,
    ∴∠1=30°.
    ∴∠AOC=∠AOM﹣∠1=90°﹣30°=60°.
    【点睛】
    本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.
    6、3.15
    【分析】
    根据跳远的距离应该是起跳板到P点的垂线段的长度进行求解即可
    【详解】
    解:由图形可知,小明的跳远成绩应该为PN的长度,即3.15米,
    故答案为:3.15.
    【点睛】
    本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键.
    7、(1)见解析;(2)∠B=38°.
    【分析】
    (1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;
    (2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.
    【详解】
    (1)∵AB∥DG,
    ∴∠BAD=∠1,
    ∵∠1+∠2=180°,
    ∴∠BAD+∠2=180°.
    ∵AD∥EF .
    (2)∵∠1+∠2=180°且∠2=142°,
    ∴∠1=38°,
    ∵DG是∠ADC的平分线,
    ∴∠CDG=∠1=38°,
    ∵AB∥DG,
    ∴∠B=∠CDG=38°.
    【点睛】
    本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.
    8、(1);(2);(3)
    【分析】
    (1)由折叠的性质,得到,,然后由邻补角的定义,即可求出答案;
    (2)由折叠的性质,先求出,然后求出∠FEG的度数即可;
    (3)由折叠的性质,先求出,然后求出∠FEG的度数即可.
    【详解】
    解:(1)将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处,
    ∴,,
    ∴;
    (2)根据题意,则
    ,,
    ∵,
    ∴,
    ∴,
    ∴;
    (3)根据题意,
    ,,
    ∵,
    ∴,
    ∴,
    ∴;
    【点睛】
    本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,.
    9、角平分线的定义,平角的定义,
    【分析】
    先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
    【详解】
    解:∵∠AOE=40°(已知)
    ∴∠AOF=180°﹣(邻补角定义)
    =180°﹣40°
    =140°
    ∵OC平分∠AOF(已知)
    ∴∠AOC∠AOF(角平分线的定义)
    ∵∠AOB=90°(已知)
    ∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
    =180°﹣90°﹣70°
    =20°
    故答案为:角平分线的定义,平角的定义,
    【点睛】
    本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
    10、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
    【分析】
    利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
    【详解】
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=∠FEC(等量代换),
    ∴AB∥EF(同位角相等,两直线平行),
    又∵∠1=∠2(已知),
    ∴AB∥CD(内错角相等,两直线平行),
    ∴EF∥CD(平行于同一条直线的两直线互相平行),
    ∴∠FDG=∠EFD(两直线平行,内错角相等),
    故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
    【点睛】
    本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.

    相关试卷

    数学第十三章 相交线 平行线综合与测试课后复习题:

    这是一份数学第十三章 相交线 平行线综合与测试课后复习题,共32页。试卷主要包含了如图所示,下列说法错误的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习,共27页。试卷主要包含了下列说法中,正确的是,如图,直线b等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共31页。试卷主要包含了下列命题中,为真命题的是,下列关于画图的语句正确的是.等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map