终身会员
搜索
    上传资料 赚现金

    难点详解沪教版(上海)七年级数学第二学期第十三章相交线 平行线章节训练试题(含答案及详细解析)

    立即下载
    加入资料篮
    难点详解沪教版(上海)七年级数学第二学期第十三章相交线 平行线章节训练试题(含答案及详细解析)第1页
    难点详解沪教版(上海)七年级数学第二学期第十三章相交线 平行线章节训练试题(含答案及详细解析)第2页
    难点详解沪教版(上海)七年级数学第二学期第十三章相交线 平行线章节训练试题(含答案及详细解析)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共30页。试卷主要包含了下列说法中正确的个数是,下列命题中,为真命题的是,下列说法中正确的有等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线章节训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )

    A.55° B.125° C.65° D.135°
    2、下列命题正确的是(  )
    (1)两条直线被第三条直线所截,同位角相等;
    (2)在同一平面内,过一点有且只有一条直线与已知直线垂直;
    (3)平移前后连接各组对应点的线段平行且相等;
    (4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;
    (5)在同一平面内,三条直线的交点个数有三种情况.
    A.0个 B.1个 C.2个 D.3个
    3、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )

    A.139° B.141° C.131° D.129°
    4、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设(  )
    A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b
    5、下列说法中正确的个数是(  )
    (1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c
    (2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c
    (3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c
    (4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.
    A.1 B.2 C.3 D.4
    6、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为(  )

    A.164°12' B.136°12' C.143°88' D.143°48'
    7、下列命题中,为真命题的是( )
    A.若,则 B.若,则
    C.同位角相等 D.对顶角相等
    8、下列图形中,∠1与∠2不是对顶角的有(  )

    A.1个 B.2个 C.3个 D.0个
    9、下列说法中正确的有( )
    ①一条直线的平行线只有一条.
    ②过一点与已知直线平行的直线只有一条.
    ③因为a∥b,c∥d,所以a∥d.
    ④经过直线外一点有且只有一条直线与已知直线平行.
    A.1个 B.2个 C.3个 D.4个
    10、如果同一平面内有三条直线,那么它们交点个数是( )个.
    A.3个 B.1或3个 C.1或2或3个 D.0或1或2或3个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,将一条等宽的纸条按图中方式折叠,若∠1=40°,则∠2的度数为 ___.

    2、如图,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=3∠AOC,则∠BOD=________.

    3、如图,直线AB与CD被直线AC所截得的内错角是 ___.

    4、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.

    5、∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为 ___.
    三、解答题(10小题,每小题5分,共计50分)
    1、根据要求画图或作答:如图所示,已知A、B、C三点.

    (1)连结线段AB;
    (2)画直线AC和射线BC;
    (3)过点B画直线AC的垂线,垂足为点D,则点A到直线BD的距离是线段_______的长度.
    2、按下面的要求画图,并回答问题:
    (1)如图①,点M从点O出发向正东方向移动4个格,再向正北方向移动3个格.画出线段OM,此时M点在点O的北偏东    °方向上(精确到1°),O、M两点的距离是    cm.
    (2)根据以下语句,在“图②”上边的空白处画出图形.
    画4cm长的线段AB,点P是直纸AB外一点,过点P画直线AB的垂线PD,垂足为点D.你测得点P到AB的距离是    cm.

    3、推理填空:如图,直线,并且被直线所截,交和于点,平分,平分,使说明.

    解:∵,
    ∴( )
    ∵平分,平分.
    ∴, ( )

    ∴( )

    ∴( )
    4、如图,∠AGB=∠EHF,∠C=∠D.
    (1)求证:BD∥CE;
    (2)求证:∠A=∠F.

    5、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.

    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=  (   ).
    ∴AB∥  (   ).
    又∵∠1=∠2(已知),
    ∴AB∥CD (   ).
    ∴EF∥   (   ).
    ∴∠FDG=∠EFD (   ).
    6、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
    解:∵∠AOE=40°(已知)
    ∴∠AOF=180°﹣ (邻补角定义)
    =180°﹣ °
    = °
    ∵OC平分∠AOF(已知)
    ∴∠AOC∠AOF( )
    ∵∠AOB=90°(已知)
    ∴∠BOD=180°﹣∠AOB﹣∠AOC( )
    =180°﹣90°﹣ °
    = °

    7、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.
    阅读下面的解答过程,并填括号里的空白(理由或数学式).
    解:∵AB∥DC(    ),
    ∴∠B+∠DCB=180°(    ).
    ∵∠B=(    )(已知),
    ∴∠DCB=180°﹣∠B=180°﹣50°=130°.
    ∵AC⊥BC(已知),
    ∴∠ACB=(    )(垂直的定义).
    ∴∠2=(    ).
    ∵AB∥DC(已知),
    ∴∠1=(    )(    ).
    ∵AC平分∠DAB(已知),
    ∴∠DAB=2∠1=(    )(角平分线的定义).
    ∵AB∥DC(己知),
    ∴(    )+∠DAB=180°(两条直线平行,同旁内角互补).
    ∴∠D=180°﹣∠DAB=   .

    8、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数.

    9、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.
    (1)写出∠AOF的一个余角和一个补角.
    (2)若∠BOE=60°,求∠AOD的度数.
    (3)∠AOF与∠EOF相等吗?说明理由.

    10、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.
    (1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;
    (2)当点E落在直线AC上时,直接写出∠BAD的度数;
    (3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数.


    -参考答案-
    一、单选题
    1、B
    【分析】
    先根据余角的定义求得,进而根据邻补角的定义求得即可.
    【详解】
    EO⊥AB,∠EOC=35°,


    故选:B.
    【点睛】
    本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.
    2、B
    【分析】
    根据平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系逐个判断即可得.
    【详解】
    解:(1)两条平行线被第三条直线所截,同位角相等;则原命题错误;
    (2)在同一平面内,过一点有且只有一条直线与已知直线垂直;则原命题正确;
    (3)平移前后连接各组对应点的线段平行(或在同一条直线上)且相等;则原命题错误;
    (4)从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离;则原命题错误;
    (5)在同一平面内,三条直线的交点个数可能为0个或1个或2个或3个,共有四种情况;则原命题错误;
    综上,命题正确的是1个,
    故选:B.
    【点睛】
    本题考查了平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系,熟练掌握各定义和性质是解题关键.
    3、A
    【分析】
    如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..
    【详解】
    解:如图,∵AECF,
    ∴∠A=∠CGB=41°,
    ∵ABCD,
    ∴∠C=180°-∠CGB=139°.

    故选:A
    【点睛】
    本题考查了平行线的性质,熟知平行线的性质是解题关键.
    4、C
    【分析】
    用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).
    【详解】
    解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”,
    用反证法时应假设结论不成立,
    即假设a与c不平行(或a与c相交).
    故答案为:C.
    【点睛】
    此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.
    5、C
    【分析】
    根据平行线的性质分析判断即可;
    【详解】
    在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;
    在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;
    在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;
    在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;
    综上所述,正确的是(1)(3)(4);
    故选C.
    【点睛】
    本题主要考查了平行线的性质,准确分析判断是解题的关键.
    6、D
    【分析】
    根据邻补角及角度的运算可直接进行求解.
    【详解】
    解:由图可知:∠AOC+∠BOC=180°,
    ∵∠COB=36°12',
    ∴∠AOC=180°-∠BOC=143°48',
    故选D.
    【点睛】
    本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.
    7、D
    【分析】
    利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
    【详解】
    解:A、若,则或,故A错误.
    B、当时,有,故B错误.
    C、两直线平行,同位角相等,故C错误.
    D、对顶角相等,D正确.
    故选:D .
    【点睛】
    本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
    8、C
    【分析】
    根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
    【详解】
    解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
    ②中∠1和∠2是对顶角,故②不符合题意;
    ③中∠1和∠2的两边不互为反向延长线,故③符合题意;
    ④中∠1和∠2没有公共点,故④符合题意.
    ∴∠1 和∠2 不是对顶角的有3个,
    故选C.
    【点睛】
    此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
    9、A
    【分析】
    根据平行线的性质,平行线的判定判断即可.
    【详解】
    ∵一条直线的平行线有无数条,
    ∴①的说法不正确;
    ∵经过直线外一点有且只有一条直线与已知直线平行,
    ∴②的说法不正确,④的说法正确;
    ∵a∥b,c∥d,无法判定a∥d
    ∴③的说法不正确.
    只有一个是正确的,
    故选A.
    【点睛】
    本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.
    10、D
    【分析】
    根据三条直线是否有平行线分类讨论即可.
    【详解】
    解:当三条直线平行时,交点个数为0;
    当三条直线相交于1点时,交点个数为1;
    当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;
    当三条直线互相不平行时,且交点不重合时,交点个数为3;
    所以,它们的交点个数有4种情形.
    故选:D.
    【点睛】
    本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论.
    二、填空题
    1、70︒
    【分析】
    如图,由平行线的性质可求得∠1=∠3,由折叠的性质可求得∠4=∠5,再由平行线的性质可求得∠2.
    【详解】
    解:如图,

    ∵a∥b,
    ∴∠3=∠1=40°,∠2=∠5,
    又由折叠的性质可知∠4=∠5,且∠3+∠4+∠5=180°,
    ∴∠5=(180°-∠3)=70°,
    ∴∠2=70°,
    故答案为:70︒.
    【点睛】
    本题主要考查平行线的性质和判定,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.
    2、67.5°
    【分析】
    根据垂直的定义得到∠AOB=90°,可利用互余得∠AOC+∠BOD=90°,把∠AOC=∠BOD代入可计算出∠BOD.
    【详解】
    解:∵AO⊥BO,
    ∴∠AOB=90°,
    ∵∠COD=180°,
    ∴∠AOC+∠BOD=90°,
    ∵∠BOD=3∠AOC,
    ∴∠BOD+∠BOD=90°,
    ∴∠BOD=67.5°.
    故答案为67.5°.
    【点睛】
    本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线的性质:过一点有且只有一条直线与已知直线垂直.
    3、∠2与∠4
    【分析】
    根据内错角的特点即可求解.
    【详解】
    由图可得直线AB与CD被直线AC所截得的内错角是∠2与∠4
    故答案为:∠2与∠4.
    【点睛】
    此题主要考查内错角的识别,解题的关键是熟知内错角的特点.
    4、18°度
    【分析】
    根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.
    【详解】
    解:∵∠COE是直角,
    ∴∠COE=90°,
    ∵∠COF=36°,
    ∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,
    ∵OF平分∠AOE,
    ∴∠AOF=∠EOF=54°,
    ∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,
    ∴∠BOD=∠AOC=18°.
    故答案为:18°.
    【点睛】
    本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.
    5、20°或125°或20°
    【分析】
    根据∠1,∠2的两边分别平行,所以∠1,∠2相等或互补列出方程求解则得到答案.
    【详解】
    解:∵∠1与∠2的两边分别平行,
    ∴∠1,∠2相等或互补,
    ①当∠1=∠2时,
    ∵∠2=3∠1-40°,
    ∴∠2=3∠2-40°,
    解得∠2=20°;
    ②当∠1+∠2=180°时,
    ∵∠2=3∠1-40°,
    ∴∠1+3∠1-40°=180°,
    解得∠1=55°,
    ∴∠2=180°-∠1=125°;
    故答案为:20°或125°.
    【点睛】
    本题考查了平行线的性质的运用,关键是注意:同一平面内两边分别平行的两角相等或互补.
    三、解答题
    1、(1)画图见解析;(2)画图见解析;(3)画图见解析,
    【分析】
    (1)连接即可;
    (2)过两点画直线即可,以为端点画射线即可;
    (3)利用三角尺过画的垂线,垂足为 可得 从而可得点A到直线BD的距离是垂线段的长度.
    【详解】
    解:(1)如图,线段AB即为所求作的线段,
    (2)如图,直线AC和射线BC即为所求作的直线与射线,
    (3)如图,BD即为所画的垂线,

    点A到直线BD的距离是线段的长度.
    故答案为:
    【点睛】
    本题考查的是画直线,射线,线段,过一点画已知直线的垂线,点到直线的距离的含义,掌握画直线,射线,线段及画已知直线的垂线是解本题的关键.
    2、(1)图见解析,53,5;(2)图见解析,3.
    【分析】
    (1)先根据点的移动得到点,再连接点可得线段,然后测量角的度数和线段的长度即可得;
    (2)先画出线段,再根据垂线的尺规作图画出垂线,然后测量的长即可得.
    【详解】
    解:(1)如图,线段即为所求.

    此时点在点的北偏东方向上,、两点的距离是,
    故答案为:53,5;
    (2)如图,线段和垂线即为所求.

    测得点到的距离是,
    故答案为:3.
    【点睛】
    本题考查了测量角的大小、线段的长度、作线段和垂线,熟练掌握尺规作图的方法是解题关键.
    3、两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
    【分析】
    利用平行线的性质定理和判定定理解答即可.
    【详解】
    解:∵AB∥CD,
    ∴∠AME=∠CNE.(两直线平行,同位角相等),
    ∵MP平分∠AME,NQ平分∠CNE,
    ∴∠1=∠AME,=∠CNE.( 角平分线的定义),
    ∵∠AME=∠CNE,
    ∴∠1=∠2.(等量代换),
    ∵∠1=∠2,
    ∴MP∥NQ.(同位角相等,两直线平行).
    故答案为:两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
    【点睛】
    此题考查的是平行线的判定及性质,掌握平行线的性质定理和判定定理是解决此题的关键.
    4、(1)证明见解析;(2)证明见解析.
    【分析】
    (1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;
    (2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.
    【详解】
    证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,
    ∴∠1=∠EHF,
    ∴BD∥CE;
    (2)∵BD∥CE,
    ∴∠D=∠2,
    ∵∠D=∠C,
    ∴∠2=∠C,
    ∴AC∥DF,
    ∴∠A=∠F.

    【点睛】
    本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.
    5、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
    【分析】
    利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
    【详解】
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=∠FEC(等量代换),
    ∴AB∥EF(同位角相等,两直线平行),
    又∵∠1=∠2(已知),
    ∴AB∥CD(内错角相等,两直线平行),
    ∴EF∥CD(平行于同一条直线的两直线互相平行),
    ∴∠FDG=∠EFD(两直线平行,内错角相等),
    故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
    【点睛】
    本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
    6、角平分线的定义,平角的定义,
    【分析】
    先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
    【详解】
    解:∵∠AOE=40°(已知)
    ∴∠AOF=180°﹣(邻补角定义)
    =180°﹣40°
    =140°
    ∵OC平分∠AOF(已知)
    ∴∠AOC∠AOF(角平分线的定义)
    ∵∠AOB=90°(已知)
    ∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
    =180°﹣90°﹣70°
    =20°
    故答案为:角平分线的定义,平角的定义,
    【点睛】
    本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
    7、见解析.
    【分析】
    先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.
    【详解】
    解:∵(已知),
    ∴(两直线平行,同旁内角互补).
    ∵(已知),
    ∴.
    ∵(已知),
    ∴(垂直的定义).
    ∴.
    ∵(已知),
    ∴(两直线平行,内错角相等).
    ∵平分(已知),
    ∴(角平分线的定义).
    ∵(己知),
    ∴(两条直线平行,同旁内角互补).
    ∴.
    【点睛】
    本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
    8、61.5°
    【分析】
    由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.
    【详解】
    解:∵OP平分∠AOC,∠AOC=38°,
    ∴∠AOP=∠COP=∠AOC=×38°=19°,
    ∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,
    ∵ON平分∠POB
    ∴∠PON=∠BOP=×161°=80.5°,
    ∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.
    【点睛】
    本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.
    9、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析
    【分析】
    (1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;
    (2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;
    (3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.
    【详解】
    解:(1)∵OC⊥CD,
    ∴∠DOF=90°,
    ∴∠AOF+∠AOD=90°,
    又∵∠BOC=∠AOD,
    ∴∠AOF+∠BOC=90°,
    ∵OC平分∠BOE,
    ∴∠COE=∠BOC,
    ∴∠AOF+∠COE=90°;
    ∴∠AOF的余角是,∠COE,∠BOC,∠AOD;
    ∵∠AOF+∠BOF=180°,
    ∴∠AOF的补角是∠BOF;
    (2)∵OC平分∠BOE,∠BOE=60°,
    ∴∠BOC=30°,
    又∵∠AOD=∠BOC,
    ∴∠AOD=30°;
    (3)∠AOF=∠EOF,理由如下:
    由(1)可得∠AOD=∠BOC=∠COE,
    ∵OF⊥OC,
    ∴∠DOF=∠COF=90°,
    ∴∠AOD+∠AOF=∠EOF+∠COE=90°,
    ∴∠AOF=∠EOF.
    【点睛】
    本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.
    10、(1);(2);(3)的值为:或.
    【分析】
    (1)先求解 再利用角的和差关系可得答案;
    (2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;
    (3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.
    【详解】
    解:(1) ∠BAD=18°,∠EAD=∠BAD,




    (2)当落在的下方时,如图,


    当落在的上方时,如图,




    (3)当落在的内部时,如图,

    ∠CAE:∠BAD=7:4,

    当落在的外部时,如图,
    ∠CAE:∠BAD=7:4,

    设则


    解得:

    综上:的值为:或.
    【点睛】
    本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.

    相关试卷

    2020-2021学年第十三章 相交线 平行线综合与测试综合训练题:

    这是一份2020-2021学年第十三章 相交线 平行线综合与测试综合训练题,共31页。试卷主要包含了如图,∠1与∠2是同位角的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试习题,共29页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共29页。试卷主要包含了直线等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map