初中沪教版 (五四制)第十四章 三角形综合与测试习题
展开
这是一份初中沪教版 (五四制)第十四章 三角形综合与测试习题,共39页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是( )
A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B
2、下列各组线段中,能构成三角形的是( )
A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、6
3、等腰三角形的一个顶角是80°,则它的底角是( ).
A.40° B.50° C.60° D.70°
4、如图,≌,和是对应角,和是对应边,则下列结论中一定成立的是( )
A. B.
C. D.
5、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )
A.3 B.4 C.5 D.6
6、下列命题是真命题的是( )
A.等腰三角形的角平分线、中线、高线互相重合
B.一个三角形被截成两个三角形,每个三角形的内角和是90度
C.有两个角是60°的三角形是等边三角形
D.在ABC中,,则ABC为直角三角形
7、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为( )
A.40° B.45° C.50° D.60°
8、如图,等腰中,,,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:①;②;③是等边三角形;④.其中正确的是( )
A.①③④ B.①②③ C.②③④ D.①②③④
9、如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为( )
A.21 B.24 C.27 D.30
10、根据下列已知条件,不能画出唯一的是( )
A.,, B.,,
C.,, D.,,
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在等边三角形中,,是边的高线,延长至点,使,则BE的长为__________.
2、如图,线段,垂足为点,线段分别交、于点,,连结,.则的度数为______.
3、如图,点E,F分别为线段BC,DB上的动点,BE=DF.要使AE+AF最小值,若用作图方式确定E,F,则步骤是 _____.
4、若一条长为24cm的细线能围成一边长等于9cm的等腰三角形,则该等腰三角形的腰长为_____cm.
5、如图,在等边△ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点.若AD=6,则EP+CP的最小值为_______________.
三、解答题(10小题,每小题5分,共计50分)
1、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形.
已知:在△ABC中,AD 平分∠CAB,交BC 边于点 D,且CD=BD,
求证:AB=AC.
以下是甲、乙两位同学的作法.
甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证△ACD≌△ABD,所以这个三角形为等腰三角形;
乙:延长AD到E,使DE=AD,连接BE,可证△ACD≌△EBD,依据已知条件可推出AB=AC,所以这个三角形为等腰三角形
(1)对于甲、乙两人的作法,下列判断正确的是( );
A.两人都正确 B.甲正确,乙错误 C.甲错误,乙正确
(2)选择一种你认为正确的作法,并证明.
2、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
(1)如图1,点D在线段BC上.
①根据题意补全图1;
②∠AEF = (用含有的代数式表示),∠AMF= °;
③用等式表示线段MA,ME,MF之间的数量关系,并证明.
(2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.
3、如图,在中,是的平分线,点在边上,且.
(Ⅰ)求证:;
(Ⅱ)若,,求的大小.
4、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.
5、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.
(1)如图1,请直接写出∠A和∠C之间的数量关系: .
(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.
(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .
6、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.
(1)求的度数;
(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.
7、命题:如图,已知,共线,(1),那么.
(1)从①和②两个条件中,选择一个填入横线,使得上述命题为真命题,你选择的条件为_______(填序号);
(2)根据你选择的条件,判定的方法是________;
(3)根据你选择的条件,完成的证明.
8、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,,P为上一点,当_______时,与是偏等积三角形;
(2)如图2,四边形是一片绿色花园,、是等腰直角三角形,.
①与是偏等积三角形吗?请说明理由;
②已知的面积为.如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G.若小路每米造价600元,请计算修建小路的总造价.
9、如图,在中,是角平分线,,.
(1)求的度数;
(2)若,求的度数.
10、已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.
(1)求证:△ADE≌△ABC;
(2)求证:AE=CE.
-参考答案-
一、单选题
1、C
【详解】
由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.
【分析】
解:∵BF=EC,
∴BF+FC=EC+FC,
∴BC=EF,
在△ABC与△DEF中,
,
∴△ABC≌△DEF(SSS),
∴∠ACB=∠DFE,
∴2∠DFE=180°﹣∠FGC,
故选:C.
【点睛】
本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).
2、C
【分析】
根据三角形的三边关系定理逐项判断即可得.
【详解】
解:三角形的三边关系定理:任意两边之和大于第三边.
A、,不能构成三角形,此项不符题意;
B、,不能构成三角形,此项不符题意;
C、,能构成三角形,此项符合题意;
D、,不能构成三角形,此项不符题意;
故选:C.
【点睛】
本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
3、B
【分析】
依据三角形的内角和是180°以及等腰三角形的性质即可解答.
【详解】
解:(180°-80°)÷2
=100°÷2
=50°;
答:底角为50°.
故选:B.
【点睛】
本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.
4、D
【分析】
根据全等三角形的性质求解即可.
【详解】
解:∵≌,和是对应角,和是对应边,
∴,,
∴,
∴选项A、B、C错误,D正确,
故选:D.
【点睛】
本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键.
5、A
【分析】
先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
【详解】
由旋转的性质得:,
,
是等边三角形,
,
,
.
故选:A.
【点睛】
本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
6、C
【分析】
分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.
【详解】
A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;
B.三角形的内角和为180°,故此选项错误;
C.有两个角是60°,则第三个角为,所以三角形是等边三角形,故此选项正确;
D.设,则,故,解得,所以,,此三角形不是直角三角形,故此选项错误.
故选:C.
【点睛】
本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.
7、C
【分析】
根据三角形内角和定理确定,然后利用平行线的性质求解即可.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.
8、A
【分析】
①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.
【详解】
解:①如图1,连接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=∠BAC=×120°=60°,
∴OB=OC,∠ABC=90°﹣∠BAD=30°
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;
②由①知:∠APO=∠ABO,∠DCO=∠DBO,
∵点O是线段AD上一点,
∴∠ABO与∠DBO不一定相等,
则∠APO与∠DCO不一定相等,故②不正确;
③∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°﹣(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等边三角形,故③正确;
④如图2,在AC上截取AE=PA,
∵∠PAE=180°﹣∠BAC=60°,
∴△APE是等边三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,
在△OPA和△CPE中,
,
∴△OPA≌△CPE(SAS),
∴AO=CE,
∴AC=AE+CE=AO+AP,
∴AB=AO+AP,故④正确;
正确的结论有:①③④,
故选:A.
【点睛】
本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.
9、C
【分析】
根据题意在AB上截取BE=BC,由“SAS”可证△CBD≌△EBD,可得∠CDB=∠BDE,∠C=∠DEB,可证∠ADE=∠AED,可得AD=AE,进而即可求解.
【详解】
解:如图,在AB上截取BE=BC,连接DE,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△CBD和△EBD中,
,
∴△CBD≌△EBD(SAS),
∴∠CDB=∠BDE,∠C=∠DEB,
∵∠C=2∠CDB,
∴∠CDE=∠DEB,
∴∠ADE=∠AED,
∴AD=AE,
∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,
故选:C.
【点睛】
本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.
10、B
【分析】
根据三角形存在的条件去判断.
【详解】
∵,,,满足ASA的要求,
∴可以画出唯一的三角形,A不符合题意;
∵,,,∠A不是AB,BC的夹角,
∴可以画出多个三角形,B符合题意;
∵,,,满足SAS的要求,
∴可以画出唯一的三角形,C不符合题意;
∵,,,AB最大,
∴可以画出唯一的三角形,D不符合题意;
故选B.
【点睛】
本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
二、填空题
1、3
【分析】
由等腰三角形三线合一的性质,得到AD=DC=1,由BE=BC+CE不难求解.
【详解】
解:三角形是等边三角形,
BC=AC=2,
又 是边的高线,
DC=,
=1,
,
故答案为:3.
【点睛】
本题考查了等边三角形的性质,掌握等腰三角形三线合一的性质是解本题的关键.
2、270°
【分析】
由题意易得,然后根据三角形内角和定理可进行求解.
【详解】
解:∵,
∴,
∴,
∵,且,
∴,
同理可得:,
∴,
故答案为270°.
【点睛】
本题主要考查三角形内角和、垂直的定义及对顶角相等,熟练掌握三角形内角和、垂直的定义及对顶角相等是解题的关键.
3、①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点
【分析】
按照①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点的步骤作图即可得.
【详解】
解:步骤是①连接,作;
②以点为圆心、长为半径画弧,交于点;
③连接交于点;
④以点为圆心、长为半径画弧,交于点;
如图,点即为所求.
故答案为:①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点.
【点睛】
本题考查了作一个角等于已知角、两点之间线段最短、作线段、全等三角形的判定与性质等知识点,熟练掌握尺规作图的方法是解题关键.
4、9或7.5或9
【分析】
分9是底边和腰长两种情况,分别列出方程,求解即可得到结果.
【详解】
解:若9cm为底时,腰长应该是(24-9)=7.5cm,
故三角形的三边分别为7.5cm、7.5cm、9cm,
∵7.5+7.5=15>9,
故能围成等腰三角形;
若9cm为腰时,底边长应该是24-9×2=6,
故三角形的三边为9cm、9cm、6cm,
∵6+9=15>9,
∴以9cm、9cm、6cm为三边能围成三角形,
综上所述,腰长是9cm或7.5cm,
故答案为:9或7.5.
【点睛】
本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键.
5、6
【分析】
要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解.
【详解】
解:作点E关于AD的对称点F,连接CF,
∵△ABC是等边三角形,AD是BC边上的中垂线,
∴点E关于AD的对应点为点F,
∴CF就是EP+CP的最小值.
∵△ABC是等边三角形,E是AC边的中点,
∴F是AB的中点,
∴CF=AD=6,
即EP+CP的最小值为6,
故答案为6.
【点睛】
本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.
三、解答题
1、(1)C ;(2)见解析
【分析】
(1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;
(2)按照乙的分析方法进行即可.
【详解】
(1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证明则正确,
故选C;
(2)依据题意,延长AD至E,使DE=AD,连接BE,如图.
∵D为BC中点.
∴.
在△CAD和△BED中
∴△CAD≌△BED(SAS).
∴,
∵AD平分∠BAC,
∴
∴
∴
∴AB=AC
∴△ABC为等腰三角形
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形.
2、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
【分析】
(1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
(2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
【详解】
解:(1)①补全图形如下图:
②∵∠CAE=∠DAC=,
∴∠BAE=30°+
∴∠FAE=2×(30°+)
∴∠AEF==60°-;
∵∠AMF=∠CAE+∠AEF=+60°-=60°,
故答案是:60°-,60°;
③MF=MA+ME.
证明:在FE上截取GF=ME,连接AG .
∵点D关于直线AC的对称点为E,
∴△ADC ≌△AEC.
∴∠CAE =∠CAD =.
∵∠BAC=30°,
∴∠EAN=30°+.
又∵点E关于直线AB的对称点为F,
∴AB垂直平分EF.
∴AF=AE,∠FAN=∠EAN =30°+,
∴∠F=∠AEF=.
∴∠AMG =.
∵AF=AE,∠F=∠AEF, GF=ME,
∴△AFG ≌△AEM.
∴AG =AM.
又∵∠AMG=,
∴△AGM为等边三角形.
∴MA=MG.
∴MF=MG+GF=MA+ME.
(2),理由如下:
如图1所示,
∵点E与点F关于直线AB对称,
∴∠ANM=90°,NE=NF,
又∵∠NAM=30°,
∴AM=2MN,
∴AM=2NE+2EM =MF+ME,
∴MF=AM-ME;
如图2所示,
∵点E与点F关于直线AB对称,
∴∠ANM=90°,NE=NF,
∵∠NAM=30°,
∴AM=2NM,
∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
∴MF=MA-ME;
综上所述:MF=MA-ME.
【点睛】
本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
3、(Ⅰ)见解析;(Ⅱ)
【分析】
(Ⅰ)由CD是的平分线得出,由得出
从而得出,由平行线的判断即可得证;
(Ⅱ)由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案.
【详解】
(Ⅰ)∵CD是的平分线,
∴,
∵,
∴,
∴,
∴;
(Ⅱ)∵,,
∴,
∴,
∴.
【点睛】
本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键
4、证明见解析.
【分析】
先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.
【详解】
证明:,
,
,
,
,
在和中,,
,
.
【点睛】
本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.
5、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°
【分析】
(1)过点B作BE∥AM,利用平行线的性质即可求得结论;
(2)过点B作BE∥AM,利用平行线的性质即可求得结论;
(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.
【详解】
(1)过点B作BE∥AM,如图,
∵BE∥AM,
∴∠A=∠ABE,
∵BE∥AM,AM∥CN,
∴BE∥CN,
∴∠C=∠CBE,
∵AB⊥BC,
∴∠ABC=90°,
∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.
故答案为:∠A+∠C=90°;
(2)∠A和∠C满足:∠C﹣∠A=90°.理由:
过点B作BE∥AM,如图,
∵BE∥AM,
∴∠A=∠ABE,
∵BE∥AM,AM∥CN,
∴BE∥CN,
∴∠C+∠CBE=180°,
∴∠CBE=180°﹣∠C,
∵AB⊥BC,
∴∠ABC=90°,
∴∠ABE+∠CBE=90°,
∴∠A+180°﹣∠C=90°,
∴∠C﹣∠A=90°;
(3)设CH与AB交于点F,如图,
∵AE平分∠MAB,
∴∠GAF=∠MAB,
∵CH平分∠NCB,
∴∠BCF=∠BCN,
∵∠B=90°,
∴∠BFC=90°﹣∠BCF,
∵∠AFG=∠BFC,
∴∠AFG=90°﹣∠BCF.
∵∠AGH=∠GAF+∠AFG,
∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).
由(2)知:∠BCN﹣∠MAB=90°,
∴∠AGH=90°﹣45°=45°.
故答案为:45°.
【点睛】
本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.
6、(1)70°;(2)15km/h
【分析】
(1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
(2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
【详解】
解:(1)根据题意得∠BAC=70°,∠ABC=40°,
∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
(2)∵∠BAC=∠ACB=70°,
∴BC=AB=75km,
∴轮船的速度为75÷5=15(km/h).
【点睛】
本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.
7、
(1)①
(2)SAS
(3)见解析
【分析】
(1)根据全等三角形的判定方法分析得出答案;
(2)根据(1)直接填写即可;
(3)利用SAS进行证明.
(1)
解:∵,
∴∠A=∠F,
∵AC=EF,
∴当时,可根据SAS证明;
当时,不能证明,
故答案为:①;
(2)
解:当时,可根据SAS证明,
故答案为:SAS;
(3)
证明:在△ABC和△FDE中,
,
∴.
【点睛】
此题考查了添加条件证明两个三角形全等,正确掌握全等三角形的判定定理是解题的关键.
8、(1);(2)①与是偏等积三角形,理由见详解;②修建小路的总造价为元
【分析】
(1)当时,则,证,再证与不全等,即可得出结论;
(2)①过作于,过作于,证,得,则,再证与不全等,即可得出结论;②过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,,求出,即可求解.
【详解】
解:(1)当时,与是偏等积三角形,理由如下:
设点到的距离为,则,,
,
,,
,
、,
与不全等,
与是偏等积三角形,
故答案为:;
(3)①与是偏等积三角形,理由如下:
过作于,过作于,如图3所示:
则,
、是等腰直角三角形,
,,,
,
,
,
在和中,
,
,
,
,,
,
,,
,
,,
与不全等,
与是偏等积三角形;
②如图4,过点作,交的延长线于,
则,
点为的中点,
,
在和中,
,
,
,
,
,
,
,
,
,
,
在和中,
,
,
,
,
,
,
.
由①得:与是偏等积三角形,
,,
,
修建小路的总造价为:(元.
【点睛】
本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型.
9、
(1);
(2).
【分析】
(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
(2)根据垂直得出,然后根据三角形内角和定理即可得.
(1)
解:∵,,
∴,
∵AD是角平分线,
∴,
∴;
(2)
∵,
∴,
∴,
∴.
【点睛】
题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
10、(1)见解析;(2)见解析
【分析】
(1)根据∠1=∠2可推出∠DAE=∠BAC,然后结合全等三角形的判定定理进行证明;
(2)由全等三角形的性质可得AE=AC,结合∠2=60°可推出△AEC为等边三角形,据此证明.
【详解】
(1)证明:∵∠1=∠2
∴∠1+=∠2+
即∠DAE=∠BAC
在△ADE和△ABC中
∴△ADE≌△ABC(ASA)
(2)证明:∵△ADE≌△ABC
∴AE=AC
又∵∠2=60°
∴△AEC为等边三角形
∴AE=CE
【点睛】
此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.
相关试卷
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习,共30页。试卷主要包含了如图,点D,下列三角形与下图全等的三角形是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步达标检测题,共33页。试卷主要包含了三角形的外角和是,有下列说法等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共28页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。